Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
AD = BC = 6 cm
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :
1/AD^2 + 1/AB^2 = 1/AH^2
<=> 1/6^2 + 1/8^2 = 1/AH^2
<=> AH = 4,8(cm)
b)
Áp dụng Pitago trong tam giác BCD vuông tại C có :
BC^2 + CD^2 = BD^2
<=> 6^2 + 8^2 = DB^2
<=> BD = 10(cm)
Xét hai tam giác vuông AHB và BCD có :
AH/BC = 4,8/6 = 4/5
AB/BD = 8/10 = 4/5
Do đó tam giác AHB đồng dạng với tam giác BCD
a/ Xét 2 tg vuông BDE và tg vuông DCE có
\(\widehat{DEB}\) chung
\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )
=> tg BDE đồng dạng với tg DCE (g.g.g)
b/ Xét tg vuông DCE có
\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông DHC và tg vuông BDE có
\(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )
=> tg DHC đồng dạng với tg BDE
\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)
\(\Rightarrow DC^2=CH.DB\)
c/
Ta có
\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)
\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)
Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC
Xét tg vuông BCD có
\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)
Ta có
\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)
\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)
Ta có
CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)
\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)
a: Xét ΔBCE vuông tại C và ΔDBE vuông tại B có
góc E chung
=>ΔBCE đồng dạng với ΔDBE
b: Xét ΔCBD vuông tại C và ΔHCB vuông tại H có
góc CBD=góc HCB
=>ΔCBD đồng dạng với ΔHCB
=>CB/HC=BD/CB
=>BC^2=HC*BD
c: CE=6^2/8=4,5cm
CH//DB
=>ΔEHC đồng dạng với ΔEBD
=>S EHC/S EBD=(EC/ED)^2=(4,5/12,5)^2=81/625
a: Xét tứ giác OBIC có
M là trung điểm của OI
M là trung điểm của BC
Do đó OBIC là hình bình hành
mà \(\widehat{BOC}=90^0\)
nên OBIC là hình chữ nhật
b: ta có: OBIC là hình chữ nhật
nên OI=BC
mà BC=AB
nên OI=AB
Hình bạn tự vẽ nha
a) Chứng minh OBIC là hình chữ nhật
Vì I đối xứng với O qua M nên
MO = MI
Xét tứ giác OBIC có :
MO = MI (cmt)
MB = MC ( Vì M là tđ BC )
mà OI giao BC tại M
=)) OBIC là hình bình hành (1)
Lại có ABCD là hình thoi
mà 2 đường chéo AC và BD giao nhau tại O
=)) góc AOB = góc COB = 90O (2)
Từ (1) và (2) =)) OBIC là hình chữ nhật
b) CM AB = OI
Vì OBIC là hình chữ nhật
=) OC = BI
mà OC = AO ( Vì ABCD là hình thoi )
=) BI = AO (3)
Lại có OBIC là hình chữ nhật
=)) OC // BI
mà O thuộc AC ( do O là tđ của AC )
=)) AC // BI hay AO // BI (4)
Từ (3) và (4) =)) ABIO là hình bình hành
=)) AB = OI
c) SABIO = ??? cm2
Vì ABCD là hình thoi
có 2 đường chéo AC và BD giao nhau tại O
=) O là tđ của AC
O là tđ của BD
mà AC = 6 cm
=) AO = OC = 6 : 2 = 3 ( cm )
Lại có BD = 9 cm
=) BO = OD = 9 : 2 = 4,5 (cm )
Xét tam giác BOC ( góc BOC = 90O ) có :
BC2 = OB2 + OC2 ( Theo định lý Pitago )
=) BC = \(\sqrt{3^2+\left(4,5\right)^2}\)
=) BC \(\approx5,4\left(cm\right)\)
Lại có BM = MC = BC chia 2 =) BM = 2,7 ( cm )
Vì ABCD là hình thoi =) BC = AB = 5,4 cm
Vì OBIC là hình chữ nhật có
2 đường chéo OI và BC giao nhau tại M
=) \(BM\perp OI\)
Vì ABOI là hbh ( cmt câu b )
=) SABOI = AB . BM = 2,7 x 5,4 = 14 , 58 (cm2 )
Vậy ta có ĐPCM
Chúc bạn học tốt =))
Vì ABCD là hình chữ nhật nên AC = BD = 10cm.
Áp dụng định lí Pytago vào tam giác ABC ta có: