K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Chọn B

Gọi I là hình chiếu của M lên (ABCD), suy ra I là trung điểm của AO.

 Khi đó

Xét tam giác CNI có

Áp dụng định lý cosin ta có:

Xét tam giác MIN vuông tại I  nên

Mà MI//SO

Chọn hệ trục tọa độ như hình vẽ. Ta có:

Khi đó 

Vectơ pháp tuyến mặt phẳng (SBD)

Suy ra 

4 tháng 1 2018

Đáp án C

9 tháng 2 2019

29 tháng 4 2017

Đáp án B

30 tháng 6 2021

dạ cho em hỏi là tại sao tính NH như vậy được ạ ?? Em cảm ơn!!

 

 

18 tháng 2 2018

Gọi I là trung điểm OA. Vì IM// SO ⇒ IM(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra 

Áp dụng định lí cô sin trong ΔCIN, ta có: 

Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).

Kẻ OE  SN ⇒ OE ⊥ (SBC).

Ta có d(O, (SBC)) = OE

8 tháng 10 2017

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

N là trung điểm của SD ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

23 tháng 3 2019

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

là trung điểm của SD  ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

22 tháng 2 2021

bctfhn ynz httrtn 

4 tháng 5 2019

Chọn C

Ta gọi E, F lần lượt là trung điểm của SC, AB

 

Ta có ME//NF(do cùng song song với BC. Nên tứ giác MENF là hình thang, và 

hay tứ giác MENF là hình thang vuông tại M, F

Ta có:  hay E là hình chiếu vuông góc của N lên (SAC)

 

Từ đó ta có được, góc giữa MN và (SAC) là góc giữa MN và CI

Suy ra, gọi  α là góc giữa MN và (SAC) thì 

21 tháng 12 2018

Chọn B.

Gọi H = DF  ∩ SA => H là trung điểm của ED. I = AC  ∩ BD => I là trung điểm BD

Vậy HI là đường trung bình của tam giác BED => HI//EB(1)

Ta có  (chóp tứ giác đều, hình chiếu của đỉnh S xuống đáy là I)

Gọi Q à trung điểm AB; dễ thấy NQ là đường trung bình của tam giác ABE => NQ//BE.

Gọi M là trung điểm BC; dễ thấy MQ//AC , 

Ta có 

Góc giữa hai đường thẳng MN và BD bằng 90 °

25 tháng 3 2019