Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{V_{SAHKE}}{V_{SABCD}}=\dfrac{2V_{SAHK}}{2V_{SABC}}=\dfrac{V_{SAHK}}{V_{SABC}}\)
\(V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.BC=\dfrac{a^3}{3}\); \(V_{SABCD}=\dfrac{2a^3}{3}\)
\(\dfrac{SH}{SB}=\dfrac{SA^2}{SB}:SB=\left(\dfrac{SA}{SB}\right)^2\); \(\dfrac{SK}{SC}=\dfrac{SA^2}{SC}:SC=\left(\dfrac{SA}{SC}\right)^2\)
\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(SC=\sqrt{SA^2+AC^2}=a\sqrt{6}\)
\(\dfrac{V_{SAHK}}{V_{SABC}}=\left(\dfrac{SA}{SB}\right)^2.\left(\dfrac{SA}{SC}\right)^2\)
\(\Rightarrow V_{SAHKE}=\left(\dfrac{2a}{a\sqrt{5}}\right)^2.\left(\dfrac{2a}{a\sqrt{6}}\right)^2.\dfrac{2a^3}{3}=\dfrac{16a^3}{45}\)
Do \(SA=SB=SC=SD\) và đáy là hình vuông nên \(SABCD\) là chóp đều
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Theo tính đối xứng của chóp đều \(\Rightarrow SB'=SD'\Rightarrow B'D'||BD\)
Gọi M là giao điểm SO và AC' \(\Rightarrow M\in B'D'\) (t/c giao tuyến 3 mp cắt nhau)
Áp dụng định lý Talet:
\(\dfrac{SM}{SO}=\dfrac{SD'}{SD}=\dfrac{SB'}{SB}=\dfrac{2}{3}\Rightarrow M\) là trọng tâm tam giác SAC
\(\Rightarrow C'\) là trung điểm SC \(\Rightarrow\dfrac{SC'}{SC}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{V_{SAB'C'D'}}{V_{SABCD}}=\dfrac{2V_{SAB'C'}}{2V_{SABC}}=\dfrac{V_{SAB'C'}}{V_{SABC}}=\dfrac{SA}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=1.\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)
Đáp án B
Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.
⇒ IA=IB=IC=IH=IK
Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.
Suy ra bán kính R= a 2 2
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(\Rightarrow\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân \(\Rightarrow\left\{{}\begin{matrix}SA=AB=a\\SB=a\sqrt{2}\end{matrix}\right.\)
\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)
\(\dfrac{V_{SAHIK}}{V_{SABCD}}=\dfrac{2V_{SAHI}}{2V_{SABC}}=\dfrac{V_{SAHI}}{V_{SABC}}=\dfrac{SH}{SB}.\dfrac{SI}{SC}=\left(\dfrac{SA}{SB}\right)^2\left(\dfrac{SA}{SC}\right)^2=\left(\dfrac{a}{a\sqrt{2}}\right)^2\left(\dfrac{a}{a\sqrt{3}}\right)^2=\dfrac{1}{6}\)
\(\Rightarrow V_{SAIHK}=\dfrac{1}{6}V_{SABCD}=\dfrac{1}{6}.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{18}\)
Bạn coi lại đề, AHIK là 1 tứ giác nên ko thể có thể tích