K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Đáp án C

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

28 tháng 5 2017

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

NV
18 tháng 4 2021

1.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)

2.

\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\Rightarrow\) Tam giác SBC vuông

Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)

NV
17 tháng 4 2021

3.

a.

 \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

b.

Gọi M là trung điểm BC \(\Rightarrow IM||AC\)

\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)

Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K

\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)

Trong mp (SAK), kẻ AH vuông góc SK

\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)

\(AK=CM=\dfrac{b}{2}\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)

9 tháng 2 2021

lại là chuyên mục toán hình :)) ( P/s hình t lấy từ gg xuống vì trên này khó vẽ... )

 undefined

Ta có: \(\cos\left(\widehat{SB,AC}\right)=\left|\cos\left(\overrightarrow{SB},\overrightarrow{AC}\right)\right|=\dfrac{\left|\overrightarrow{SB}.\overrightarrow{AC}\right|}{SB.AC}\)

Mà: \(\overrightarrow{SB}.\overrightarrow{AC}=\left(\overrightarrow{SA}+\overrightarrow{AB}\right).\overrightarrow{AC}=\overrightarrow{SA}.\overrightarrow{AC}+\overrightarrow{AB}.\overrightarrow{AC}\)

\(=SA.AC.\cos\left(\overrightarrow{SA},\overrightarrow{AC}\right)+AB.AC.\cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)\)

thay số các kiểu ta đc \(\overrightarrow{SB}.\overrightarrow{AC}=a^2\) (1)

Hoàn toàn dễ dàng tính được \(SB=\sqrt{SA^2+AB^2}=2a\) ( tam giác SAB vuông tại A )

\(\Rightarrow SB.AC=2\sqrt{2}a^2\) (2)

Từ (1),(2) \(\Rightarrow\cos\left(\widehat{SB,AC}\right)=\dfrac{1}{2\sqrt{2}}\)

\(\Rightarrow\left(\widehat{SB,AC}\right)\simeq69^0\) 

có 17' nữa t định ghi mà sợ ông kêu số xấu sai kết quả :)))

 

 

9 tháng 2 2021

đúng r, nh mà tui bảo tính cosin thui ;))

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

c: (SC;(SAD))=(SC;SD)=góc CSD

Vì ABCD là hình vuông nên \(AC=a\sqrt{2}\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

\(SD=\sqrt{SA^2+AD^2}=2a\)

\(cosCSD=\dfrac{SC^2+SD^2-CD^2}{2\cdot SC\cdot SD}=\dfrac{5a^2+4a^2-a^2}{2\cdot a\sqrt{5}\cdot2a}=\dfrac{2\sqrt{5}}{5}\)=>\(\widehat{CSD}\simeq27^0\)

a: (SC;(SAB))=(SC;SB)=góc BSC

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

\(SB=\sqrt{a^2+\left(a\sqrt{3}\right)^2}=2a\)

\(cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{4a^2+5a^2-a^2}{2\cdot2a\cdot a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

=>góc BSC=27 độ

b: (SO;(SAB))=(SO;SK)(OK vuông góc AB tại K)

Xét ΔABC có OK//BC

nên OK/BC=AK/AB=AO/AC=1/2

=>OK=a/2; AK=1/2a

\(SK=\sqrt{SA^2+AK^2}=\sqrt{3a^2+\dfrac{1}{4}a^2}=\dfrac{a\sqrt{13}}{2}\)

\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)

OK=a/2

\(cosOSK=\dfrac{SO^2+SK^2-OK^2}{2\cdot SO\cdot SK}=\dfrac{\dfrac{14}{4}a^2+\dfrac{13}{4}a^2-\dfrac{1}{4}a^2}{2\cdot\dfrac{a\sqrt{14}}{2}\cdot\dfrac{a\sqrt{13}}{2}}=\dfrac{\sqrt{182}}{14}\)

=>góc OSK=16 độ

c: (SA;SBD)=(SA;SO)(AO vuông góc BD) tại O

=góc ASO

\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)

SA=a căn 3

AO=a*căn 2/2

\(cosASO=\dfrac{SA^2+SO^2-AO^2}{2\cdot SA\cdot SO}=\dfrac{\sqrt{42}}{7}\)

=>góc ASO=22 độ