Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C
Lại có MDCN là hình thang vuông tại M và D.
Bằng định lí Talet và Pitago ta tính được
Chọn D.
Phương pháp:
+) Sử dụng công thức tỉ lệ thể tích:
Cho khối chóp S.ABC, các điểm A 1 , B 1 , C 1 lần lượt thuộc SA, SB, SC
+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.
Cách giải:
I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)
Trong (SAB), gọi N là giao điểm của IK và AB
Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.
Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và
*) Gọi L là trung điểm của SD
Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL
Đáp án B
d K , S C D = 1 2 d H , S C D = 1 2 H F .
A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a
C H = B H 2 + B C 2 = 13 3 a .
C ó g ó c g i ữ a S C v à đ á y l à 60 ° n ê n t a c ó
S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a
ta có 1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a
Đáp án A