K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Chọn C.

Ta có: 

Kẻ AH ⊥ SD, suy ra 

Từ đây ta có: SH là hình chiếu của SA lên (SCD).

Do đó: 

Theo giả thiết ta có:

Xét tam giác SAD vuông tại A, ta có:

Vậy 

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

23 tháng 4 2019

1 tháng 10 2019

16 tháng 8 2017

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

19 tháng 1 2018

Chọn C.

Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.

Gọi I = AC ∩ BD, J = AC'  ∩  SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.

Suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó dễ thấy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

4 tháng 11 2017

 

27 tháng 9 2017