Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đường cao của hình chóp đồng thời là đường cao tam giác đều
S A B ⇒ h = a 3 3 ⇒ V = a 3 2 . a . 2 a 3 = a 3 3 3
Chọn đáp án B.
Chọn đáp án D
Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D
Suy ra
⇒ S H C vuông cân tại H.
Do ∆ B H C vuông tại H nên
⇒ S H = H C = a 5 2
Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t là
Đáp án B.
Vẽ đường thẳng d qua B và song song với AC.
Gọi K, I lần lượt là hình chiếu của H trên d và SB, L là hình chiếu của H trên SK.
d ( D , ( S B C ) ) = 2 a 3 ⇔ d A ; ( A B C ) = 2 a 3 ⇔ d H , S B C = a 3 ⇔ H I = a 3
1 S H 2 = 1 H I 2 - 1 H B 2 ⇒ S H = a 5 5
sin K B H ⏞ = H K H B = sin C A B ⏞ = C B A C ⇒ H K = H B . C B A C = a 5 5
d A C ; S B = d A , S B K = 2 d H , S B K = 2 H L = 2 . S H . H K S H 2 + H K 2 = a 10 5
Đáp án A
Gọi H là trung điểm của AB .
Lại có: S A B ⊥ A B C D ⇒ S H ⊥ A B C D .
Do A D / / B C nên giao tuyến d của (SAD) và (SBC) đi qua S và song song với AD.
Do A D ⊥ A B A D ⊥ S H ⇒ A D ⊥ S A B ⇒ d ⊥ S A B .Suy ra góc giữa hai mặt phẳng (SAD) và (SBC) bằng 180 ∘ − AS B ⏜ = 60 ∘ .
Đáp án B