Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Gọi H là trung điểm của AB thì S H ⊥ A B C D ⇒ S H = a 2 .
Khoảng cách từ H đến BC, CD, DA đều là a 2 3 ⇒ S A B C D = 1 2 . a 2 3 . 9 a − a = 2 a 2 3 .
Vậy thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 2 . 2 a 2 3 = a 3 3 9 .
Đáp án A
Ta có
V ' = 1 3 d M ; A B C C . S A B C = 1 3 . 1 2 d S ; A B C D . 1 2 S A B C D V ' = 1 3 d G ; A B D . S A B D = 1 3 . 1 3 d S ; A B C D . 1 2 S A B C D
Do đó V V ' = 3 2
Đáp án C
Ta có
S Q P C N = S A B C D − S A B N Q − S Δ P Q D = S A B C D − 1 2 S A B C D − 1 8 S A B C D = 3 8 S A B C D .
Khi đó
V M . Q P C N = 1 3 . d M ; A B C D . S Q P C N = 1 3 . 1 2 . d S ; A B C D . 3 8 . S A B C D = 3 16 . 1 3 . d S ; A B C D . S A B C D = 3 16 . V 0 .
Vậy V = 3 16 V 0 .
Đáp án A
Gọi H và K lần lượt là hình chiếu của M và G xuống ABCD
Ta có V V ' = 1 3 M H . S A B C 1 3 G K . S A D B = 3 2 . 1 2 S A B C D 1 2 S A B C D = 3 2
Đáp án C
Bài toán sử dụng bổ đề sau: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại các điểm A’, B’, C’, D’ với tỉ số
S A ' S A = x ; S B ' S B = y ; S C ' S C = z ; S D ' S D = t thì ta có đẳng thức
1 x + 1 z = 1 y + 1 t và tỉ số
V S . A ' B ' C ' D ' V S . A B C D = x y z t 4 1 x + 1 y + 1 z + 1 t
Áp dụng vào bài toán
đặt u = S M S B , v = S N S D ta có
1 u + 1 v = S A S A ' + S C S I = 1 1 + 1 2 3 = 5 2 ≥ 2 u v ≥ 16 25 ⇒ V ' V = u v .1. 2 3 4 1 u + 1 v + 1 1 + 1 2 3 = 5 u v 6 ≥ 8 15
Đáp án C
Ta có: S Q P C N = S A B C D − S A B N Q − S Δ P Q D
= S A B C D − 1 2 S A B C D − 1 8 S A B C D = 3 8 S A B C D
Khi đó: V M . Q P C N = 1 3 d M ; A B C D .
S Q P C N = 1 3 . 1 2 d S ; A B C D . 3 8 S A B C D
= 3 16 . 1 3 d S ; A B C D . S A B C D = 3 16 V 0 .
Vậy V = 3 16 V 0 .
Đáp án là A