K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Chọn hệ trục tọa độ Oxyz như hình vẽ. Khi đó

Ta có mặt phẳng (ABCD) có vectơ pháp tuyến là , mặt phẳng (GMN) có vectơ pháp tuyến là

Gọi (α) là góc giữa hai mặt phẳng (GMN) và (ABCD), ta có

Gọi E, F lần lượt là hình chiếu của M và N lên (ABCD). Suy ra E, F lần lượt là trung điểm của HC, HD.

Gọi H, I lần lượt là trung điểm của AB, CD.

Mà d (SIH) nên góc giữa góc giữa hai mặt phẳng (GMN) và (ABCD) là

31 tháng 3 2018

Chọn đáp án C

Gọi O là trung điểm AB.

Do tam giác SAB đều và nằm trong mặt phẳng vuông góc (ABCD) nên

Chọn hệ trục tọa độ Oxyz như hình vẽ. Chọn a = 2.

Khi đó: 

Ta có mặt phẳng (ABCD) có vecto pháp tuyến là 

Mặt phẳng (GMN) có vecto pháp tuyến là 

 

Gọi α là góc giữa hai mặt phẳng (GMN) và (ABCD)

Ta có: 

29 tháng 10 2018

26 tháng 5 2021

Gợi ý xem bạn làm được ko, ko thì để mình trình bày luôn

Kẻ \(KC\perp HD;KC\cap HD=\left\{K\right\}\)

\(\left\{{}\begin{matrix}KC\perp HD\\KC\perp SH\end{matrix}\right.\Rightarrow KC\perp\left(SHD\right)\Rightarrow\left(SKC\right)\perp\left(SHD\right)\)

Kẻ \(CI\perp SK;CI\cap SK=\left\{I\right\}\Rightarrow CI\perp\left(SHD\right)\Rightarrow CI\perp\left(SHD\right)\)

\(\Rightarrow\left(SC,\left(SHD\right)\right)=\left(SC,SI\right)\)

 

29 tháng 3 2018

Đáp án là C 

Cách 1. Ta có mặt phẳng (P) đi qua trọng tâm của tam giác SAB cắt các cạnh của khối chóp lần lượt tại M, N, P, Q. Với MN//AB, NP//BC, PQ//CD, QM//AD.

Tương tự 

Nên 

Đặt AB = x.

Ta có 

Từ đó 

Cách 2. Do hai khối chóp S.MNPQ, S.ABCD đồng dạng với nhau theo tỉ số k = 2 3  nên tỉ lệ thể tích là 

9 tháng 7 2019

14 tháng 8 2017

1 tháng 5 2019

Đáp án A

29 tháng 4 2018

Đáp án B

Phương pháp:

Xác định góc giữa hai mặt phẳng (α;β)

- Tìm giao tuyến Δ của (α;β)

- Xác định 1 mặt phẳng γ ⊥ Δ

- Tìm các giao tuyến a = α∩γ, b = β ∩ γ

- Góc giữa hai mặt phẳng (α;β):(α;β) = (a;b)

 

Cách giải:

Gọi I, J lần lượt là trung điểm của AB, CD.

Tam giác SAB cân tại S ⇒ SI ⊥ AB

 

Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SI ⊥ (ABCD)