Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác CED là tam giác vuông cân tại E nên trục của đường tròn đi qua ba điểm C, E, D là đường thẳng ∆ đi qua trung điểm I của đoạn thẳng CD và song song với SA.
Gọi M, N lần lượt là trung điểm của SE và SC. Ta có mặt phẳng (ABNM) là mặt phẳng trung trực của đoạn SE. Vậy tâm O của mặt cầu ngoại tiếp hình chóp S.CDE chính là giao điểm của Δ và mp(ABNM). Gọi K là trung điểm của AB thì KN // AM và do đó KN //(SAE). Ta có IK // AD nên IK // (SAE).
Vậy KN và ∆ đồng phẳng và ta có O là giao điểm cần tìm.
Chú ý rằng OIK là tam giác vuông cân, vì ∠ OKI = ∠ MAE = 45 °
Ta có OI = IK, trong đó
Vậy
Do đó, bán kính mặt cầu ngoại tiếp hình chóp S.CDE là:
Gọi O là tâm đáy \(\Rightarrow OA=\dfrac{1}{2}AC=\sqrt{2}\)
\(\Rightarrow SO=\sqrt{SA^2-OA^2}=\sqrt{2}\)
\(\Rightarrow OA=OB=OC=OD=SO\Rightarrow\) O đồng thời là tâm mặt cầu ngoại tiếp chóp
\(\Rightarrow R=OA=\sqrt{2}\)
\(\Rightarrow V=\dfrac{4}{3}\pi R^3=\dfrac{8\pi\sqrt{2}}{3}\)
Đáp án A
Dễ thấy trung điểm I của SC là tâm hình cầu ngoại tiếp chóp S.AICD.
Vậy thể tích hình cầu ngoại tiếp chop S.AICD là:
Đáp án A
Phương pháp:
Sử dụng phương pháp tọa độ hóa.
Cách giải:
Gắn hệ trục tọa độ như hình vẽ.
Trong đó, B(2a;0;0), C(2a;2a;0), E(a;0;0), S(0;0;a)
Gọi I(x0;y0;z0) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, IS2 = IB2 = IC2 = IE2