Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại đề, sao lại có 2 cái AF là đường cao của 2 tam giác khác nhau thế kia?
a: AD vuông góc SA
AD vuông góc AB
=>AD vuông góc (SAB)
AB vuông góc AD
AB vuông góc SA
=>AB vuông góc (SAD)
b:
\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)
\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)
\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)
\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)
vecto AM*vecto SC
=vecto SC*vecto SM-vecto SC*vecto SA
=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)
\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)
=>AM vuông góc SC
a: AD vuông góc SA
AD vuông góc AB
=>AD vuông góc (SAB)
AB vuông góc AD
AB vuông góc SA
=>AB vuông góc (SAD)
b:
\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)
\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)
\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)
\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)
vecto AM*vecto SC
=vecto SC*vecto SM-vecto SC*vecto SA
=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)
\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)
=>AM vuông góc SC
a: AD vuông góc SA
AD vuông góc AB
=>AD vuông góc (SAB)
AB vuông góc AD
AB vuông góc SA
=>AB vuông góc (SAD)
b:
\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)
\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)
\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)
\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)
vecto AM*vecto SC
=vecto SC*vecto SM-vecto SC*vecto SA
=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)
\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)
=>AM vuông góc SC
Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này; phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC); phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC); phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)
Đáp án D