Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Hướng dẫn giải:Ta có
Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .
Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .
Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .
Tam giác AHB ,có B H = A B 2 - A H 2 = a 3 2
Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4 .
Vậy V S . A B C D = 1 3 S A B C D . S A = a 3 3 2
Đáp án C.
Hướng dẫn giải:
Ta có
Kẻ H I ⊥ C K , H J ⊥ F I
Ta có H I = 2 a 5 5
⇒ S B = a 3
⇒ H F = a 2 2
Ta có 1 H J 2 = 1 H I 2 + 1 H F 2 = 13 4 a 2
Chọn A
=> SB là hình chiếu của SC lên mặt phẳng (SAB).
.
Xét tam giác SBC vuông tại B có
Xét tam giác SAB vuông tại A có:
Chọn C.
Vì SA ⊥ (ABCD) nên góc giữa đường thẳng SD và mặt phẳng (ABCD) là góc S D A ^
Tam giác SAD vuông tại A nên
Chọn đáp án C
Ta có:
SA là hình chiếu của SD lên mặt phẳng (SAB).
Góc giữa SD với mặt phẳng (SAB) là D S A ^
Ta có:
Xét tam giác SAD vuông tại A: