Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD).
Ba mặt phẳng (SAB),(SCD) và (ABCD) đôi một cắt nhau theo các giao tuyến d; CD; AB. Mà A B / / C D ⇒ d / / A B / / C D ⇒ d là đường thẳng đi qua S và song song với AB và CD =>cố định.
Có I ∈ M Q ⊂ S A B , I ∈ N P ⊂ S C D ⇒ I ∈ d . Vì M là điểm di động trên đoạn AB nên tập hợp các giao điểm I là một đoạn thẳng d. Ta chọn C.
Đáp án D
Gọi O là tâm của hình bình hành ABCD, nối S O ∩ A M = I .
Qua I kẻ đường thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra
Chọn đáp án D
Ta có
Khi đó
Gọi I là trung điểm của AB.
Ta có SA=SB=AB=CA=CB=a nên tam giác SAB và tam giác ABC đều cạnh a.
Khi đó A B ⊥ S I , A B ⊥ C I và S I = C I = a 3 a
Mặt khác S I = C I = S C = a 3 2 nên ∆ S I C đều
Vậy góc giữa hai mặt phẳng (MNP) và (ABC) bằng 60 0
Đáp án D
Gọi O là tâm của hình bình hành ABCD, nối S O ∩ A M = I
Qua I kẻ đương thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra S H S B = S K S D = S I S O .
Điểm M ∈ S C thỏa mãn 5 S M = 2 S C ⇒ S M S C = 2 5
Xét tam giác SAC, có:
M S M C . A C A O . I O I S = 1 ⇒ I O S I = 4 3 ⇒ S I S O = 3 7
Khi đó:
V S . A K M V S . A D C = S K S D . S M S C ; V S . A H M V S . A B C = S H S B . S M S C
Suy ra:
V S . A H M K V S . A B C D = S M S C . S H S B = 2 5 . 3 7 = 6 35 ⇒ V S . A H M K = 6 36 V S . A B C D
Ta có IN là đường trung bình của ∆ S A C nên IN//AC
Lại có
Do đó: IN//AC//d
Vậy giao tuyến của hai mặt phẳng (BIN) và (ABCD) là đường thẳng d đi qua B và song song với AC
Chọn A.