K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

+  Ta có IJ là đường trung bình của tam giác SAB nên IJ// AB// CD

 => IJCD là hình thang. Do đó A đúng.

+ Ta có I B ⊂ S A B I B ⊂ I B C ⇒ S A B ∩ I B C = I B .  Do đó B đúng.

+ Ta có J D ⊂ S B D J D ⊂ J B ​ D ⇒ S B D ∩ J B D = J D .  Do đó C đúng.

 + Trong mặt phẳng (IJCD), gọi  IC và JD cắt nhau tại M .,

=> giao tuyến của mặt phẳng (IAC) và (JBD) là MO

 Do đó D sai.

 Chọn D.

28 tháng 12 2021

ơ đề có sai ko bạn

28 tháng 12 2021

mình làm cũng hoang mang lắm bạn=), hay để hỏi cô xem sao
 

24 tháng 1 2019

Chọn A.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

15 tháng 3 2023

a/ Ta có: AB vuông góc với BC, SC vuông góc với BC (vì SC vuông góc với mặt đáy ABCD). Vậy AB // SC. Vậy AB vuông góc (SBC).

b/ Tương tự, ta có: AD vuông góc với CD, SC vuông góc với CD. Vậy AD // SC. Vậy AD vuông góc (SCD).

c/ Ta có: SA vuông góc với mặt đáy ABCD (vì S là đỉnh chóp), CI vuông góc với SB (vì đường thẳng CI là hình chiếu của đường thẳng SC lên mặt phẳng chứa SB và CI). Vậy SA // CI. Vậy SA vuông góc CI.

d/ Gọi M là trung điểm của IJ. Ta cần chứng minh SA vuông góc CM. Ta có: CM vuông góc với IJ (vì nằm trên đường trung trực của IJ). Ta cũng có: SA vuông góc CI (đã chứng minh ở câu c). Vậy ta cần chứng minh CI // JM. Từ đó suy ra (SAC) ⊥ (CIJ). Theo tính chất của hình học không gian, ta có CI vuông góc với mặt phẳng (SBC). Tương tự, JI vuông góc với mặt phẳng (SCD). Vậy CI // JI. Điều này suy ra từ tính chất của mặt phẳng và đoạn thẳng vuông góc với mặt phẳng. Suốt đoạn thẳng IJ, ta có thể lấy một điểm nào đó làm trung điểm, ví dụ M. Vậy CI // JM.

27 tháng 8 2021

ai giúp em với ạ :(

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.a). Tính khoảng cách từ điểm S đến mp(ABCD).b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.e). Tính góc giữa đường thẳng SC và mp(ABCD).f). Tính góc...
Đọc tiếp

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC

0