K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

a/ \(\left\{{}\begin{matrix}S\in SB\subset\left(SBC\right)\\S\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow S=\left(SBC\right)\cap\left(SCD\right)\)

\(\left\{{}\begin{matrix}C\in SC\subset\left(SBC\right)\\C\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow C=\left(SBC\right)\cap\left(SCD\right)\)

\(\Rightarrow\left(SBC\right)\cap\left(SCD\right)=SC\)

b/ Gọi O là giao điểm của AC và BD

\(\Rightarrow\left\{{}\begin{matrix}O=\left(SAC\right)\cap\left(SBD\right)\\S=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\Rightarrow\left(SBD\right)\cap\left(SAC\right)=SO\)

c/ \(\left\{{}\begin{matrix}S=\left(SAD\right)\cap\left(SBC\right)\\Sx//AD//BC\end{matrix}\right.\Rightarrow\left(SAD\right)\cap\left(SBC\right)=Sx\)

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 11 2017

a, Giao tuyến (SAC) và (SBD) là SO


A S B C D O

19 tháng 6 2021

a, Gọi \(I=AC\cap BD\)

Mà \(AC\in\left(SAC\right);BD\in\left(SBD\right)\)

\(\Rightarrow I=\left(SAC\right)\cap\left(SBD\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SI\) là giao tuyến cần tìm.

b, Gọi \(K=AC\cap BM\)

Mà \(AC\in\left(SAC\right);BM\in\left(SBM\right)\)

\(\Rightarrow K=\left(SAC\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAC\right)\cap\left(SBM\right)\Rightarrow SK\) là giao tuyến cần tìm.

19 tháng 6 2021

c, Gọi \(N=AD\cap BM\)

Mà \(AD\in\left(SAD\right);BM\in\left(SBM\right)\)

\(\Rightarrow N=\left(SAD\right)\cap\left(SBM\right)\)

Lại có \(S=\left(SAD\right)\cap\left(SBM\right)\Rightarrow SN\) là giao tuyến cần tìm.

d, Gọi \(T=AM\cap BC\)

Mà \(AM\in\left(SAM\right);BC\in\left(BMC\right)\)

\(\Rightarrow T=\left(SAM\right)\cap\left(SBC\right)\)

Lại có \(S=\left(SAM\right)\cap\left(SBC\right)\Rightarrow ST\) là giao tuyến cần tìm.