Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Do Δ A ' B ' C ' là ảnh của Δ A B C qua phép V G ; K = − 1 2
Do đó: S A ' B ' C ' S A B C = k 2 = 1 4 ⇒ V A ' B ' C ' V A B C = d S ; A B C . S A ' B ' C ' d S ; A B C . S A B C = 1 4
Đáp án A.
Gọi K(a;b) là tâm đường tròn ngoại tiếp Δ A B C .
Ta có: A K 2 = a - 1 2 + b - 2 2 ; B K 2 = a - 5 2 + b - 4 2 và
C K 2 = a - 3 2 + b + 2 2 .
Từ A K 2 = B K 2 = C K 2 , ta có a - 1 2 + b - 2 2 = a - 5 2 + b - 4 2 a - 1 2 + b - 2 2 = a - 3 2 + b + 2 2
⇔ - 2 a - 4 b + 5 = - 10 a - 8 b + 41 - 2 a - 4 b + 5 = - 6 a + 4 b + 13 ⇔ 2 a + b = 9 a - 2 b = 2 ⇔ a = 4 b = 1 → K 4 ; 1 .
Bán kính đường tròn ngoại tiếp ∆ A B C là R = A K = 4 - 1 2 + 1 - 2 2 = 10 .
Gọi K' là tâm đường tròn ngoại tiếp ∆ A ' B ' C ' , do V 1 ; - 3 = ∆ A B C = ∆ A ' B ' C ' nên V 1 ; - 3 K = K ' → I K → = - 3 I K → . Mà V 1 ; - 3 A = A ' → I A → = - 3 I A → .
Suy ra I A ' → - I K ' → = - 3 I A → - I K → ⇔ K ' A ' → = - 3 K A → . Bán kính đường tròn ngoại tiếp ∆ A ' B ' C ' là R = K ' A ' = 3 K A = 3 R = 3 10 .
Đáp án B
G A → = − 2 G A ' → ⇒ V G , − 2 A ' = A G B → = − 2 G B ' → ⇒ V G , − 2 B ' = B G C → = − 2 G C ' → ⇒ V G , − 2 C ' = C ⇒ V G , − 2 Δ A ' B ' C ' = Δ A B C
Đáp án A
Giả sử S A → = x S A ' → ; S B → = y S B ' → ; S C → = z S C ' → .
Gọi G là trọng tâm tam giác ABC ⇒ G A → + G B → + G C → = 0 .
⇒ 3 G S → + S A → + S B → + S C → = 0
⇒ S G → = S A → 3 + S B → 3 + S C → 3 ⇒ S G → = x 3 . S A ' → + y 3 . S B ' → + z 3 . S C ' → 1
Do A ' B ' C ' đi qua G nên ba vectơ G A ' → ; G B ' → ; G C ' → đồng phẳng
Suy ra tồn tại 3 số i ; m ; n , i 2 + m 2 + n 2 ≠ 0 sao cho i . G A ' → + m . G B ' → + n . G C ' → = 0
i + m + n . G S → + i . S A ' → + m . S B ' → + n . S C ' → = 0
⇒ S G → = i i + m + n S A ' → + m i + m + n S B ' → + n i + m + n . S C ' → 2
Do S G ; S A ' ; S B ' ; S C ' không đồng phẳng nên từ (1) và (2) ta có
x 3 = i i + m + n ; y 3 = m i + m + n ; z 3 = n i + m + n
x + y + z 3 = i + m + n i + m + n = 1 ⇒ x + y + z = 3
Ta có 1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2 = x 2 a 2 + y 2 b 2 + z 2 c 2
Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số thực x a ; y b ; z c và a ; b ; c ta có .
x 2 a 2 + y 2 b 2 + z 2 c 2 a 2 + b 2 + c 2 ≥ x + y + z 2
⇔ 1 S A ' 2 + 1 S B ' 2 + 1 S C ' 2 ≥ x + y + z 2 a 2 + b 2 + c 2 = 3 a 2 + b 2 + c 2
Dấu “=” xảy ra khi x 2 a 2 = y 2 b 2 = z 2 c 2
Đáp án A
Ta có V G ; − 1 2 A = A ' ⇒ G A ' → = − 1 2 G A → ⇒ A ' là trung điểm của B ' C '
Tương tự, ta thấy B ' C ' lần lượt là trung điểm của A ' C ' , A ' B ' ⇒ S Δ A ' B ' C ' S Δ A B C = 1 4
Vậy tỉ số V S . A ' B ' C ' V S . A B C = d S ; A B C . S Δ A ' B ' C ' d S ; A B C . S Δ A B C = 1 4