K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

x s K A N B H D C

Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC). 

\(\Rightarrow\widehat{SCH}=60^0\)

Gọi D là trung điểm cạnh AB. Ta có :

\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)

\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)

\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)

\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)

Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)

Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)

\(AH=\frac{2a}{3}\)\(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)

\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)

Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)

30 tháng 3 2016

Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
 Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF

28 tháng 11 2017

31 tháng 8 2018

Đáp án A.

Hướng dẫn giải:

Vì S H ⊥ ( A B C ) nên hình chiếu vuông góc của SA trên mặt đáy (ABC) là HA. Do đó

Tam giác ABC đều cạnh a nên A H = a 3 2 .

Tam giác vuông SHA

Diện tích tam giác đều ABC là S ∆ A B C = a 3 3 4 .

Vậy  V S . A B C D = 1 3 S ∆ A B C . S H = a 3 3 8

28 tháng 3 2016
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

10 tháng 6 2018

Đáp án D

2 tháng 9 2019

Phương pháp:

Cách giải:

Ta có 

Chọn B.

29 tháng 3 2016

A B C S H

Gọi H là trung điểm của BC=> HA=HB=HC

Kết hợp với giả thiết

SA=SB=SC=>\(SH\perp BC,\Delta SHA=\Delta SHB=SHC\)

\(\begin{cases}SH\perp\left(ABC\right)\\\widehat{SAH}=60^0\end{cases}\)

Tam giác ABC là tam giác vuông cân tại A

\(AC=AB=a\sqrt{2}\Rightarrow BC=2a\Rightarrow AH=a\)

Tam giác SHA vuông :

\(SH=AH.\tan60^0=a\sqrt{3}\Rightarrow V_{S.ABC}=\frac{1}{3}.\frac{1}{2}AB.AC.SH=\frac{\sqrt{3}a^3}{3}\)

Gọi O; R lần lượt là tâm và bán kính của mặt cầu ngoại tiếp chóp S.ABC. Suy ra P thuộc đường thẳng SH, nên O thuộc mặt phẳng (SBC). Do đó R là bán kính đường tròn ngoại tiếp tam giác SBC. 

Xét tam giác SHA ta có : \(SA=\frac{SH}{\sin60^0}=2a\Rightarrow\Delta SBC\) là tam giác đều có độ dài cạnh bằng 2a.

Suy ra \(R=\frac{2a}{2\sin60^0}=\frac{2a\sqrt{3}}{3}\)

27 tháng 4 2017

Chọn C

11 tháng 10 2019

 Đáp án B

 

25 tháng 7 2018