Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Ta có:
( S A B ) ⊥ ( A B C ) ( S A C ) ⊥ ( A B C ) ( S A B ) ∩ ( S A C ) = S A ⇒ S A ⊥ ( A B C )
S A B C = a 2 3 4 , S A = a 2
Vậy thể tích khối chóp V A B C = a 3 6 12
Đáp án A
Từ giả thiết, ta suy ra góc giữa SC và mặt đáy chính là góc SCA. Suy ra tam giác SAC vuông cân ở A, và SA=AC=a.
Thể tích khối chóp là
V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)
\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên và đáy hay \(\widehat{SMO}=60^0\)
\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)
Phương pháp:
Sử dụng kiến thức để tìm chiều cao của hình chóp
Sử dụng công thức tính diện tích tam giác đều cạnh a là S = a 2 3 4
Sử dụng công thức tính thể tích khối chóp V = 1 3 S.h với S là diện tích đáy và h là chiều cao hình chóp.
Cách giải:
Từ đề bài ta có
Vì tam giác đều cạnh a và AB = AC = BC = a.
Tam giác vuông tại A (do SA ⊥ (ABC) => SA ⊥ AC) nên theo định lý Pytago ta có
Thể tích khối chóp là
Chọn B
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Chọn D.
Đáy ABC là tam giác đều cạnh a nên diện tích bằng a 2 3 4
Đường cao của hình chóp là SC = a. => Thể tích khối chóp S.ABC là: