K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Chọn D.

Đáy ABC là tam giác đều cạnh a nên diện tích bằng   a 2 3 4

Đường cao của hình chóp là SC  = a. => Thể tích khối chóp S.ABC là:

4 tháng 12 2018

Chọn A.

Ta có: 

( S A B ) ⊥ ( A B C ) ( S A C ) ⊥ ( A B C ) ( S A B ) ∩ ( S A C ) = S A ⇒ S A ⊥ ( A B C )

S A B C = a 2 3 4 ,   S A =   a 2

Vậy thể tích khối chóp  V A B C = a 3 6 12  

15 tháng 2 2018

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
12 tháng 7 2017

19 tháng 5 2019

Đáp án A

Từ giả thiết, ta suy ra góc giữa SC  mặt đáy chính  góc SCA. Suy ra tam giác SAC vuông cân  A,  SA=AC=a.

Thể tích khối chóp 

V = 1 3 S A B C = 1 3 . 3 4 a 2 . a = 3 12 a 3

NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

8 tháng 12 2018

Phương pháp:

Sử dụng kiến thức  để tìm chiều cao của hình chóp

Sử dụng công thức tính diện tích tam giác đều cạnh a là  S =  a 2 3 4

Sử dụng công thức tính thể tích khối chóp V =  1 3 S.h  với S là diện tích đáy và h là chiều cao hình chóp.

Cách giải:

Từ đề bài ta có

Vì tam giác  đều cạnh a  và AB = AC = BC = a.

Tam giác  vuông tại A (do SA ⊥ (ABC) => SA ⊥ AC) nên theo định lý Pytago ta có 

Thể tích khối chóp là 

Chọn B

18 tháng 3 2017

29 tháng 1 2019

Chọn D.

Ta có:  SA=SB=AB=a 3

Gọi H là trung điểm của AB.

Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2

Diện tích đáy S A B C D = 3 a 2

Vậy thể tích khối chóp  

V S . A B C D = 1 3 S H . S A B C D = 3 a 2 2