K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

4 tháng 12 2019

Đáp án A

3 tháng 6 2018

Đáp án B

5 tháng 3 2017

Đáp án A

29 tháng 8 2018

Đáp án B

25 tháng 2 2018

Đáp án A

6 tháng 10 2018

Chọn đáp án B

B H →   =   - 2 C H → và H nằm giữa BC.

BH là hình chiếu của SB lên (ABC).

Góc giữa SB với (ABC) là:  S B H ^ =  α

Diện tích tam giác đều ABC là: 

Thể tích khối chóp S.ABC là:

Tam giác SBH vuông tại H:

31 tháng 8 2018

Đáp án A.

Hướng dẫn giải:

Vì S H ⊥ ( A B C ) nên hình chiếu vuông góc của SA trên mặt đáy (ABC) là HA. Do đó

Tam giác ABC đều cạnh a nên A H = a 3 2 .

Tam giác vuông SHA

Diện tích tam giác đều ABC là S ∆ A B C = a 3 3 4 .

Vậy  V S . A B C D = 1 3 S ∆ A B C . S H = a 3 3 8

5 tháng 4 2016

A N B C H K S

Theo giả thiết, \(HA=HC=\frac{1}{2}AC=a\) và \(SH\perp\left(ABC\right)\)

Xét \(\Delta v.ABC\) ta có : \(BC=AC.\cos\widehat{ACB}=2a\cos30^0=\sqrt{3}a\)

Do đó : \(S_{\Delta.ABC}=\frac{1}{2}AC.BC.\sin\widehat{ACB}=\frac{1}{2}.2a.\sqrt{3}a.\sin30^0=\frac{\sqrt{3}a^2}{2}\)

Vậy \(V_{S.ABC}=\frac{1}{3}SH.S_{ABC}=\frac{1}{3}.\sqrt{2}a.\frac{\sqrt{3}}{2}a^2=\frac{\sqrt{6}a^3}{6}\)

Vì CA=2HA nên d(C,(SAB))=2d(H, (SAB))  (1)

Gọi N là trung điểm của Ab, ta có HN là đường trung bình của tam giác ABC

Do đó HN//BC suy ra AB vuông góc với HN.

Lại có AB vuông góc với Sh nên AB vuông góc với mặt phẳng (SHN).

Do đó mặt phẳng (SAB) vuông góc với mặt phẳng (SHN).

Mà Sn là giao tuyến của 2 mặt phẳng vừa nêu, nên trong mặt phẳng (SHN), hạ HK vuông góc với SN, ta có HK vuông góc với mặt phẳng (SAB)

Vì vậy d(J, (SAB)) = HK. Kết hợp với (1), suy ra d(C. (SAB))=2HK (2)

Vì \(SH\perp\left(ABC\right)\) nên \(SH\perp HN\), xét tam giác v.SHN, ta có :

\(\frac{1}{HK^2}=\frac{1}{SH^2}+\frac{1}{HN^2}=\frac{1}{2a^2}+\frac{1}{HN^2}\)

Vì HN là đường trung bình của tam giác ABC nên \(HN=\frac{1}{2}BC=\frac{\sqrt{3}a}{2}\)

Do \(\frac{1}{HK^2}=\frac{1}{2a^2}+\frac{4}{3a^2}=\frac{11}{6a^2}\) suy ra \(HK=\frac{\sqrt{66}a}{11}\) (3)

Thế (3) vào (2) ta được \(d\left(C,\left(SAB\right)\right)=\frac{\sqrt{66}a}{11}\)