Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi H là trung điểm của BC ta có: A H ⊥ B C Do A B C ⊥ S B C ⇒ A H ⊥ S B C
Đặt A H = x ⇒ H C = a 2 − x 2 = H B = S H ⇒ Δ S B C
vuông tại S (do đường trùng tuyến bằng cạnh đối diện). Suy ra B C = S B 2 + S C 2 = a 3 . Gọi O là tâm đường tròn ngoại tiếp Δ A B C ⇒ O ∈ A H ⇒ O A = O B = O C = OS .Ta có: R = R A B C = A C 2 sin B , trong đó sin B = A H A B = A S 2 − S H 2 A B = 1 2 Do đó R C = a ⇒ S x q = 4 π R 2 C = 4 π a 2 .
Đáp án A
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM // SA. Mà
Đáp án B
Gọi H là trung điểm B C ⇒ A H ⊥ B C → S B C ⊥ A B C A H ⊥ S H .
Xét hai tam giác vuông SHA và BHA có H A chung S A = B A = a ⇒ Δ S H A = Δ B H A .
⇒ S H = B H = C H ⇒ Δ S B C vuông tại S ⇒ R b = B H = B C 2 .
Dễ thấy
G T = B C ⇒ R = R b 2 + R d 2 − G T 2 4 = B H 2 + R d 2 − B C 2 4 = R d = a
Xét tam giác ABC, có:
sin C = A B 2 R = 1 2 ⇒ cos C = 3 2 ⇒ B C = 2 H C = 2 A C . cos C = a 3
Trong tam giác vuông SBC, ta có S C = B C 2 − S B 2 = a 2 .
Đáp án C
Gọi H là trung điểm B C ⇒ A H ⊥ B C ⇒ A H ⊥ S H
Ta có Δ S H A = Δ B H A , Δ S B C vuông tại S ⇒ R b = B H = B C 2
R = R b 2 + R d 2 − B C 2 4 = a
Xét Δ A B C có
sin C = A B 2 R = 1 2 ⇒ cos C = 3 2 ⇒ B C = 2 H C = a 3
Ta có trong tam giác vuông S B C : S C = B C 2 − S B 2 = a 2
Đáp án B
Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do S A = S B = S C nên I A = I B = I C ⇒ I là tâm đường tròn ngoại tiếp Δ A B C . Mà Δ A B C vuông cân tại A nên I là trung điểm của BC và I A = I B = I C = 1 2 B C = a 2 2 .
Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên S A , A B C ^ = S A , I A ^ = S A I ^ = 45 0 .
Do Δ S I A vuông tại I nên Δ S A I vuông cân tại I, khi đó : S I = I A = a 2 2 ⇒ d S ; A B C = S I = a 2 2
Đáp án B
Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của .
Ta có S A , A B C ^ = S A , A M ^ = S A M = 45 0
Vì ABC là tam giác vuông cân nên H cũng là trung điểm của BC vì thế
A M = 1 2 B C = a 2 2
ta có
d S ; A B C = S M = A M . tan S A M = a 2 2 . tan 45 0 = a 2 2
Đáp án C
Gọi I là trung điểm của SC.
Khi đó I là tâm mặt cầu ngoại tiếp hình chóp
Bán kính
Dựng tam giác đều IAB (I và C cùng phía bờ AB). Ta có ∠ I B C = 120 ° - 60 ° = 60 ° và IB=BC nên DIBC đều, IA=IB=IC=a
Qua I dựng đường thẳng song song với SA, cắt đường trung trực của SA tại O thì O là tâm mặt cầu ngoại tiếp hình chóp.
Gọi M là trung điểm của SA.
Chọn B.
Phương pháp:
+ Gọi H là trung điểm BC. Ta chứng minh A H ⊥ A B C và AH là trục đường tròn ngoại tiếp tam giác
SBC
+ Suy ra tâm mặt cầu ngoại tiếp chóp S. ABC là giao của AH và đường trung trực cạnh AB.
+ Chỉ ra tam giác SBC vuông tại S từ đó tính SC theo định lý Pytago.
Cách giải: