Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)
\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên và đáy hay \(\widehat{SMO}=60^0\)
\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)
\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)
Chọn B.
Dễ thấy AB ⊥ BC. Suy ra SB ⊥ BC, ∆ SMN đồng dạng với ∆ SCB, do đó
Đáp án C
Gọi H là chân đường vuông góc hạ từ S xuống mặt phẳng đáy.
Kẻ HM, HN, HP lần lượt vuông góc với các cạnh AB, BC, CA.
Khi đó ta có SM, SN, SP lần lượt vuông góc với AB, BC, CA.
Do đó:
Khi đó: H M = H N = H P = H S tan α = H S 3
Suy ra H là tâm đường tròn nội tiếp tam giác ABC bán kính HM.
Áp dụng công thức Hê-rông ta có: S ∆ A B C = 24 6 (đvdt)
⇒ H M = S ∆ A B C p = 4 6 3
⇒ H S = 3 H M = 4 6
⇒ V S . A B C = 1 3 H S . S ∆ A B C = 192 (đvtt).
Chọn D
Gọi H là hình chiếu vuông góc của S xuống mặt phẳng (ABC) và I, J, K là hình chiếu vuông góc của H lên các cạnh BC, CA, AB
Mà các mặt bên tạo với đáy 1 góc 600 nên
=> ΔSHJ = ΔSHI = ΔSHK (cạnh huyền – góc nhọn)
=> HI=HJ=HK => H là tâm đường tròn nội tiếp tam giác ABC
Mặt khác:
Tam giác SHI vuông tại H có SH = HI = tan 600 = 2√2
Khi đó: .