Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H, K lần lượt là hình chiếu của B, C trên AD
Gọi α là góc giữa 2 mặt phẳng S A D , S B C
⇒ Δ S H K là hình chiếu của Δ S B C trên S A D ⇒ c o s α = S S H K S S B C
Ta có H K = B C = 2 a ⇒ S S H K = 1 2 S A . H K = a 3 .2 a 2 = a 2 3
Lại có d A ; B C = B H = a 3 ⇒ d S ; B C = a 3 . 2 = a 6
Suy ra S S B C = 1 2 d S ; B C . B C = a 3 6 .
Vậy c o s α = a 3 3 a 3 6 = 2 2
Đáp án B
Vì ABCD là hình vuông ⇒ A B ⊥ A D 1
Ta có S A B ⊥ A B C D S A C ⊥ A B C D ⇒ S A ⊥ A B C D ⇒ S A ⊥ A B 2
Từ (1), (2) suy ra A B ⊥ S A D ⇒ S B ; S A D ^ = S B ; S A ^ = B S A ^
Tam giác SAB vuông tại A, có cos B S A ^ = S A S B = S A S A 2 + A B 2 = 2 5 5 .
Chọn B.
Phương pháp: Sử dụng định nghĩa góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng.
Đáp án là A
Gọi H là trung điểm của A B . Gọi K là hình chiếu vuông góc của H lên S B .
Khi đó, C K H ^ là góc giữa hai mp
Ta có: S H = 2 a 3 2 = a 3 ; S B = 2 a ; H B = a ⇒ H K = a 3 2 ; C K = a 7 2 .
Vậy cos C K H ^ = 3 7