K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Kẻ đường chéo MP

Ta được SMQX= SMPX

SMNY=SMPY

=> SMXPY= SMPX + SMPY

Khi đó \(S_{MXPY}=\dfrac{1}{2}S\)

Nhớ tick nhé !

3 tháng 5 2017

Sau khi kẻ đường thẳng MP ta có:

\(\Delta MPQ=\Delta MPN\) (cạnh-cạnh-cạnh)

=> \(\dfrac{1}{2}\)SMPQ = \(\dfrac{1}{2}S_{MPN}\)

hay \(\Delta MPX=\Delta MPY\).

\(S_{MPX}+S_{MPY}=S_{MXPY}=S_{MXQ}+S_{MYN}\) nên SMXPY = \(\dfrac{1}{2}S\).

Vậy SMXPY = \(\dfrac{1}{2}S\).

9 tháng 12 2017

Chọn A

17 tháng 11 2017

Chọn D

18 tháng 9 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

△ DMC có CM = 2/3BC

Hình bình hành ABCD và ΔDMC có chung đường cao kẻ từ đỉnh D đến BC.

Gọi độ dài đường cao là h, BC = a

Ta có diện tích hình bình hành ABCD là S = a h

S D M C  = 1/2 h. 2/3 a = 1/3 ah = 1/3 S

S A B M D = S A B C D -  S D M C  = s - 1/3 S = 2/3 S

19 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.

S A B M N = S C D E F = a 2

S B H G C = S D K J A = b 2

Diện tích đa giác bằng :

S A B M N = S C D E F = a 2

S B H G C = S D K J A = b 2

4 tháng 3 2019

Gọi I là trung điểm của AD, K là giao điểm của CI và BD. Kẻ ME ^ BD tại E, CF ^ BD tại F.

Có  B N = 1 3 B D , E M = 1 2 C F S B M N = 1 2 E M . B N = 1 2 . 1 2 C F . 1 3 B D = 1 6 S B C D = 1 12 S ⇒ S M N D C = 1 2 S − 1 12 S = 5 12 S

Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
⇒⇒FG//ADFG//AD
C/m tương tự đc EH//AD;GH//EF//BCEH//AD;GH//EF//BC
⇒EFGH⇒EFGH là hình bình hành
a/Để EFGH là hình chữ nhật thì góc FGH=90oFGH=90o
⇒gócHGD+gócFGC=90o⇒gócHGD+gócFGC=90o
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
⇒⇒ góc BCD+góc ADC=90o90o
⇒⇒Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=90o90o
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
⇒⇒AD=BC
⇒⇒Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi⇒⇒ABCD phải có đủ cả hai điều kiện trên

Nối A với C ta có AP là đường trung tuyến của ΔACDΔACD nên

SADP=SAPC=12SADC=14SABCDSADP=SAPC=12SADC=14SABCD

Tương tự SACR=SBCR=12SABC=14SABCD.SACR=SBCR=12SABC=14SABCD.

⇒SAPC+SACR=SARCP=12SABCD.⇒SAPC+SACR=SARCP=12SABCD.

SADP=SAPC=12SADC=14SABCDSADP=SAPC=12SADC=14SABCD

Tương tự SACR=SBCR=12SABC=14SABCD.SACR=SBCR=12SABC=14SABCD.

⇒SAPC+SACR=SARCP=12SABCD.⇒SAPC+SACR=SARCP=12SABCD.

Gọi H là giao điểm của AP và BQ, K là giao điểm của CR và BQ, M là giao điểm của AP và DS, N là giao điểm của CR và DS. 

Dễ thấy HKNM là hình bình hành nên các tam giác sau đây có cùng diện tích:

SAKH=SHKM=SMNH=SMNCSAKH=SHKM=SMNH=SMNC=SAKB=SMCD=SAKB=SMCD

Mà SAKR=12SAKBSAKR=12SAKB (đáy gấp đôi, chung đường cao)

Tương tự SMPC=12SMCDSMPC=12SMCD

⇒SAKH=SHKM=SMNH⇒SAKH=SHKM=SMNH=SMNC=(SAKR+SMPC)=SMNC=(SAKR+SMPC)=15SARCP.=15SARCP.

Mà SARCP=12SABCDSARCP=12SABCD

⇒SHKM+SMKN=15SABCD⇒SHKM+SMKN=15SABCD hay SKHMN=15SABCD.