K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

a: Xét tứ giác MFEN có 

MF//EN

MF=EN

Do đó: MFEN là hình bình hành

mà MF=MN

nên MFEN là hình thoi

=>ME⊥FN

16 tháng 12 2021

a)MNPQ là hbh =>MQ//NP,MQ=NP

MQ//NP=>MF//NE(1)

MF=1/2MQ,NE=1/2NP=>NE=MF(2)

từ (1) và (2) =>FMNE là hbh

MQ=2MN=>MN=MQ/2

Mà MF=MQ/2=>MF=MN

hbh FMNE có MF=MN=>FMNE là hình thoi

=>ME vuông góc NF=>đpcm

b)MF=MN=>tg MFN cân=>F=N

tg MFN có M+F+MNF=180

thay M=40,F=MNF

=>40+2MNF=180

=>2MNF=140

=>MNF=70

MQ//NP=>M+MNP=180

thay M=40

=>40+MNP=180

=>MNP=140

MNP=MNF+FNP

=>140=70+FNP

=>FNP=70

MNPQ là hbh=>M=P=>P=40

MQ//NP=>FQ//NP=>NFQP là hình thang

hình thang NFQP có góc P khác góc N(40 độ khác 70 độ)

=>NFQP ko phải là hình thang cân

16 tháng 12 2021

a.Ta có MNPQMNPQ là hình bình hành

→MQ//NP,MQ=NP→MQ//NP,MQ=NP

Mà F,EF,E là trung điểm MQ,NPMQ,NP

→MF=FQ=12MQ=12NP=NE=EP→MF=FQ=12MQ=12NP=NE=EP

→FQ=NE→FQ=NE

→NFQE→NFQE là hình bình hành 

→NF//QE→QE//NK→NF//QE→QE//NK

→NEQK→NEQK là hình thang

b.Ta có MF//NE,MF=NEMF//NE,MF=NE

→MNEF→MNEF là hình bình hành

Mà NP=2MN→MN=12NP=NENP=2MN→MN=12NP=NE

→MNEF→MNEF là hình thoi

→ME⊥NF,EM→ME⊥NF,EM là phân giác ˆNEFNEF^

Tương tự FP⊥EQ,EQFP⊥EQ,EQ là phân giác ˆFEPFEP^

Lại có ˆNEF+ˆFEP=180o→ME⊥QENEF^+FEP^=180o→ME⊥QE

→GFHE→GFHE là hình chữ nhật

c.Để GFHEGFHE là hình vuông

→FE→FE là phân giác ˆGFHGFH^

→FE→FE là phân giác ˆNFPNFP^

→EF⊥NP→EF⊥NP

→MN⊥NP→MN⊥NP

→MNPQ→MNPQ là hình chữ nhật

1 tháng 11 2021

Help me please 😭

1 tháng 11 2021

tham khảo

a) Ta có: (F là trung điểm của AD)

(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: (gt)

mà (F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)

hay 

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có (cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

⇒(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên (hai góc đồng vị)

hay 

Ta có: tia FE nằm giữa hai tia FB,FD

nên 

(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên (hai góc trong cùng phía bù nhau)

hay (2)

Từ (1) và (2) suy ra 

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có (cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

23 tháng 12 2021

a: Xét tứ giác MNEP có

H là trung điểm của NP

H là trung điểm của ME

Do đó: MNEP là hình bình hành

b: Ta có: MNEP là hình bình hành

=>MN//PE

mà QP//MN

và PE,QP có điểm chung là P

nên E,P,Q thẳng hàng