Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì AE=CF và AD=BC (hbh ABCD) nên AD-AE=BC-CF
Do đó DE=BF
Mà ABCD là hbh nên AD//BC hay DE//BF
Vậy BFDE là hbh
b, Gọi O là giao điểm của AC và BD thì O là trung điểm AC,BD (ABCD là hbh)
Ta có BFDE là hbh và O là trung điểm BD nên O là trung điểm EF
Vậy AC,BD,EF đồng quy tại O
a: Xét ΔAEB và ΔCFD có
AB=CD
\(\widehat{ABE}=\widehat{CDF}\)
BE=DF
Do đó: ΔAEB=ΔCFD
Suy ra: \(\widehat{AEB}=\widehat{CFD}\)
\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AE//CF
a) Gọi O là giao điểm của BD và AC
Theo bài ra ta có: \(BE=DF< \frac{BD}{2}\)
=> DF<DO và BF< BO
=> E nằm giữa B và O ;
F nằm giữa D và O
O là giao điểm 2 đường chéo của hình bình hành ABCD => OB=OD
Theo bài ra : EB = FD
=> OB-EB= OD-FD
=> OF=OE
Xét tứ giác AECF có: O là trung điểm EF ( OE=OF) và O là trung điểm AC ( ABCD là hình bình hành)
=> AECF là hình bình hành
b) G/s: AN =NM=MB => AM=2/3 AB
=> M là trọng tâm tam giác AGC
mà O là trung điểm AC
=> G; M; O thẳng hàng (1)
Gọi H là giao điểm của CM và AG
=> H là trung điểm AG ,
Lấy P là trung điểm GM
=> HP là đường trung bình của tam giác GAM
=> HP// = 1/2 AM
=> HP//= MB
=> HPBM là hình bình hành
=> PB//=HM
=> PB //ME
Xét tam giác OPB có PB//ME ; M là trung điểm OP
=> ME là đường trung bình
=> E là trung điểm OB
Vậy E là trung điểm OB với O là giao điểm của hai đường chéo hình bình hành ABCD