Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy ngay BCDO là tứ giác nội tiếp nên \(\widehat{MBO}=\widehat{ODC}\) (Góc ngoài tại đỉnh đổi)
b. Xét tam giác CMN có CO là đường cao đồng thời phân giác, vậy nó là tam giác cân. Từ đó suy ra \(\widehat{CMA}=\widehat{CNA}\)
Do ABCD là hình bình hành nên \(\widehat{CNA}=\widehat{BAM}\Rightarrow\widehat{BAM}=\widehat{BMA}\Rightarrow BM=BA=DC\left(1\right)\)
Xét trong đường tròn ngoại tiếp tam giác BDC có \(\widehat{BCO}=\widehat{DCO}\Rightarrow BO=OD\left(2\right)\)
Theo câu a, \(\widehat{MBO}=\widehat{ODC}\left(3\right)\)
Từ (1), (2), (3) suy ra \(\Delta OBM=\Delta ODC\left(g-c-g\right)\)
a) Ta thấy \(\Delta\)CEF có CO vừa là phân giác ^ECF, vừa vuông góc với EF, suy ra \(\Delta\)CEF cân tại C
Vì tứ giác ABCD là hình bình hành nên DC = AB = BE (1)
Ta có ^BCO = ^DCO suy ra (OB = (OD hay OB = OD (2); lại có ^ODC = ^OBE (Tứ giác BCDO nội tiếp) (3)
Từ (1);(2);(3) suy ra \(\Delta\)OBE = \(\Delta\)ODC (c.g.c) (đpcm).
b) Từ câu a ta có OC = OE. Tương tự OC = OF. Vậy O là tâm ngoại tiếp \(\Delta\)CEF (đpcm).
c) Dễ có \(\Delta\)OIB ~ \(\Delta\)DIC suy ra IB.DC = IC.OB hay IB.BE = IC.OB. Tương tự ID.DF = IC.OD
Từ đó IB.BE = ID.DF (Vì OB = OD). Mà EI = FI (Vì I thuộc trung trực EF) nên IB.BE.EI = ID.DF.FI (đpcm).
a) CM: \(\widehat{OBM}=\widehat{ODC}\)
\(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)
\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )
=> \(\widehat{OBM}=\widehat{ODC}\)
b)
+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao
=> Tam giác CMN cân tại C (1)
=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)
=> Tam giác BMA cân tại B
=> BM=BA=CD ( ABCD là hình bình hành) (2)
+) CO là phân giác \(\widehat{BCD}\)
=> \(\widebat{BO}=\widebat{DO}\)
=> BO=DO (3)
+) Xét tam giác BOM và tam giác DOC có:
\(\widehat{OBM}=\widehat{ODC}\)( theo a)
BM=CD ( theo 2)
BO=DO (theo 3)
=> \(\Delta BOM=\Delta DOC\)
+) OM=OC
Và từ (1) => CO là đường trung trực của MN
=> OM=ON
Vậy OM=ON=OC
=> O là tâm đường tròn ngoại tiếp tam giác CMN
c) GỌi H là giao của IO và BD
=> IH vuông BD và H là trung điể m BD
Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)
\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)
\(=IK^2-ID^2+2HD.KD\)
=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)
=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)
Ta lại có: CK là phân giác trong của tam giác CBD
=> \(\frac{BK}{KD}=\frac{CB}{CD}\)
Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)
=> CB=DN
=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)
Từ (4), (5)
=> ĐPCM