K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

a.
vì ABCD là hình bình hành
suy ra AB//CD, AD//BC
vì AB//DK, theo Tales, ta có
BM/MD = MA/MK
vì AD//BN, theo Tales, ta có
MN/MA = BM/DM
b.
từ BM/MD = MA/MK
và BM/MD = MN/MA
suy ra MA/MK = MN/MA
hay MA^2 = MN.MK

5 tháng 11 2017

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.   a. Chứng minh △AHB và △BCD đồng dạng    b. Chứng minh BC.AB = AH.BD     c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD   a. Chứng minh: △CBN và △CDM cân    b. Chứng minh: △CBN \(\sim\) △MDN    c. Chứng minh: M,C,N thẳng hàng3) Cho △ABC vuông tại A (AB < AC)...
Đọc tiếp

1) Cho hình chữ nhật ABCD có AB > AD. Vẽ AH vuông góc với BD tại điểm H.

   a. Chứng minh △AHB và △BCD đồng dạng

    b. Chứng minh BC.AB = AH.BD 

    c. Tia AH cắt cạnh DC tại M và cắt tia BC tại K. Chứng minh \(HA^2=HK.HM\)

2) Cho hình bình hành ABCD, trên tia đối của tia BA lấy BN = AD

   a. Chứng minh: △CBN và △CDM cân

    b. Chứng minh: △CBN \(\sim\) △MDN

    c. Chứng minh: M,C,N thẳng hàng

3) Cho △ABC vuông tại A (AB < AC) có đường cao AH.

   a. Chứng minh: △ABH\(\sim\)△CBA

    b. Chứng minh: \(AH^2=BH.HC\)

    c. Trên đường thẳng vuông góc với AC tại C, lấy điểm D sao cho CD=AB (D và B nằm khác phía so với đường thẳng AC). Đoạn thẳng HD cắt đoạn thẳng AC tại S. Kẻ \(\text{AF}\perp H\text{S }t\text{ại F}\)

Chứng minh BH.CH = HF.HD

1

3:

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC