Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. vì ABCD là hình bình hành => MB//CD
theo hệ quả của định lý Ta-lét, ta có: tam giác NMB ~ tam giác NDC
vì AD//CN (ABCD là hbh)
=> \(\dfrac{AK}{KC}\)= \(\dfrac{KD}{KN}\)
góc AKD = góc NKC (đối đỉnh)
=> tam giác AKD ~ tam giác CKN (c.g.c)
cho hình bình hành abcd có cd bằng 6cm,ad bằng 5cm lấy f trên cạnh bc sao cho cf bằng 3cm tìm df cắt tia ab tại g
a. chứng minh tam giác fbg đồng dạng với tam giác fcd và tam giác dag đồng dạng với tam giác fcd
Xét ΔFBG và ΔFCD có
\(\widehat{FBG}=\widehat{FCD}\)
\(\widehat{BFG}=\widehat{CFD}\)
Do đó: ΔFBG\(\sim\)ΔFCD
Xét ΔDAG và ΔFCD có
\(\widehat{A}=\widehat{C}\)
\(\widehat{DGA}=\widehat{FDC}\)
Do đó: ΔDAG\(\sim\)ΔFCD