Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2^2+4^2+6^2+...+20^2=2^2.\left(1^2+2^2+3^2+...+10^2\right)\)
Do đó S = 22M
=> M = 1540 . 22 = 1540 . 4 = 6160
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
a: Xét tứ giác BMDN có
O là trung điểm của MN
O là trung điểm của BD
Do đó: BMDN là hình bình hành
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)