Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M$ là trung điểm $AB$ $\Rightarrow AM=0,5AB$
$N$ là trung điểm $CD\Rightarrow CN=0,5CD$
Mà $AB=CD$ (tính chất hình bình hành) $\Rightarrow AM=CN$
Xét tứ giác $AMCN$ có cặp cạnh đối $AM,CN$ song song và bằng nhau nên $AMCN$ là hình bình hành.
$\Rightarrow CM\parallel AN\Rightarrow QN\parallel PC$ và $PM\parallel AQ$
Áp dụng định lý Ta-let cho các cặp cạnh song song trên ta có:
\(\frac{DQ}{QP}=\frac{DN}{NC}=1\Rightarrow DQ=QP(1)\)
\(\frac{BP}{PQ}=\frac{BM}{AM}=1\Rightarrow BP=PQ(2)\)
Từ $(1);(2)\Rightarrow DQ=PQ=BP$
Mà $DQ+PQ+BP=BD=18$ (cm)
$\Rightarrow PQ=\frac{BD}{3}=6$ (cm)
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
a)
Vì AP = PD
BQ = QC
=> PQ là đường trung bình của hình thang ABCD
mà đường chéo BD và AC cắt PQ tại M và N
=> M là trung điểm của BD và N là trung điểm của PQ
Xét tam giác ADB có
AP = PD
BM = MD
=> PM là đùng trung mình của tam giác ADB
=> PM = \(\frac{1}{2}AB\)( 1 )
Xét tam giác ACB có :
BQ = QC
AN = CN
=> QN là đường trung bình của tam giác ACB
=> QN = \(\frac{1}{2}AB\)( 2 )
Từ ( 1 ) và ( 2 ) => PM = QN
b)
Vì PQ là đùng trung bình của hình thang ABCD
\(\Rightarrow PQ=\frac{AB+DC}{2}=\frac{6+10}{2}=8\)
Vậy PQ = 8 cm
Study well
bạn dùng tính chất của đg trung bình là ra
chuẩn đấy mạnh