K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

xét tứ giác AECF: có AE = FC và AE//FC => AECF là hình bình hành => AF//CE

xét △DNC: có F là trung điểm của DC và FM//CN (đường tb) => M là trung điểm của DN => vtDM = vtMN (1)

xét △BMA: có E là trung điểm của AB và NE//AM ( đường tb) => N là trung điểm của MB => BM=MN (2)

từ (1) và (2) suy ra : DM=MN=NB => vtDM = vtMN = vtNB ( cùng hướng, cùng độ lớn)


A B C D E M N F

NV
22 tháng 12 2020

\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AI}\) (đpcm)

26 tháng 6 2017

Đáp án C

16 tháng 5 2019

Đáp án C

a: vecto BM=vecto BA+vecto AM

=-vecto AB+1/2vecto AD

vecto AN=vecto AD+vecto DN

=vecto AD+1/2*vecto AB

b: vecto BM*vecto AN=vecto 0

=>BM vuông góc với AN

vecto AN=vecto AC+vecto CN

=vecto AC+1/2vecto CD

=vecto AC+1/2vecto BA

=vecto AC-1/2vecto AB