K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a: Xét tứ giác EBDA có 

EB//DA

EA//DB

Do đó: EBDA là hình bình hành

Xét tứ giác ABDF có 

AB//DF

AF//BD

Do đó: ABDF là hình bình hành

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

 

Bài 2: 

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân

Bài 2:

a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có

AD=CB

góc ADN=góc CBM

DO đó: ΔADN=ΔCBM

=>DN=BM và AN=CM

b: Xet tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

c: Gọi O là giao của AC và BD

=>O là trung điểm của AC

Xet ΔAKC có AN/AK=AO/AC

nên NO//KC

=>KC//BD

Xét ΔBAK có

BN vừa là đường cao, vừa là trung tuyến

nên ΔBAK cân tại B

=>BA=BK=DC

Xét tứ giác BDKC có

KC//BD

DC=BK

Do đo; BDKC là hình thang cân