K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

A E F N B C M D

do ABCD là hình bình hành

=>AD//BC

=>\(\widehat{DAC}=\widehat{BCA}\)(so le)

Xét \(\Delta ADE\)\(\Delta CBF\) có:

AD=BC( do ABCD là hình bình hành)

\(\widehat{DAC}=\widehat{BCA}\)(cmt)

AE=CF(gt)

=>\(\Delta ADE\)=\(\Delta CBF\)(c.g.c)

=>\(\widehat{AED}=\widehat{CFB}\)

Ta có:

\(\widehat{AED}=\widehat{NEC}(đối dỉnh) \)

\(\widehat{BFC}=\widehat{AFM}(đối đỉnh)\)

=>\(\widehat{NEC}=\widehat{AFM}\)

Mà hai góc này ở vị trí so le trong

=>DN//MB

=>EN//BF(1)

Lại có:

AE=EF(2)

=>AN=NB=> N là trung điểm của AB

MB//DN=>MF//DE(3)

Lại có: CF=EF(4)

Từ (3),(4)

=>CM=MD

=> M là trung điểm của CD