K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018
31 tháng 10 2021

1: Xét tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

26 tháng 12 2020
Giúp mình đi mọi người
Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
11 tháng 10 2015

a) chứng minh tứ giác AMCN là hình bình hành

M là trung điểm AB nên: AM = \(\frac{1}{2}\)BC

N là trung điểm CD nên: CN = \(\frac{1}{2}\)CD

Vì tứ giác ABCD là hình bình hành nên:

- AB = CD => AM = CN

- AB // CD => AM //CN

Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.

b) chứng minh M, O, N thẳng hàng

* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.

Do đó, O là trung điểm AC

* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC

hay M, O, N thẳng hàng.

7 tháng 10 2017

M là trung điểm AB nên : \(AM=\frac{BC}{2}\)

N là trung điểm CD nên : \(CN=\frac{CD}{2}\)

Vì tứ giác ABCD là hình bình hành : 

- AB = CD => AM = CN

- AB // CD => AM // CN 

Tứ giác AMCN có các cặp cạnh AM , CN song song và bằng nhau nên là hình bình hành ( đpcm )

b) - AC và BD là 2 đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm mỗi đường 

=> O là trung điểm AC

- AC và MN là 2 đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC 

hay M , O , N thẳng hàng  ( đpcm )

11 tháng 10 2020

Bài 7. Cho hình bình hành ABCD , O là giao điểm của AC và BD Gọi M và N lần lượt là trung điểm của các cạnh BC và AD . Chứng minh : a ) Tứ giác AMCN là hình bình hành . b ) Ba điểm M , O , N thẳng hàng . c ) Đường chéo BD cắt AM , CN lần lượt tại I và K. Chứng minh DK = KI = IB .