K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

a, Vì tứ giác ABCD là hình bình hành

\(\widehat{ABC}=\widehat{ADC}\) (2 góc đối)

\(\widehat{B_1}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{D_1}+\widehat{ADC}=180^0\) (kề bù)

\(\widehat{B_1}=\widehat{D_1}\)

Vì AM ⊥ BC ⇒ \(\widehat{AMB}=90^0\)

AN ⊥ CD ⇒ \(\widehat{AND}=90^0\)

ΔABM và ΔADN có

\(\left\{{}\begin{matrix}\widehat{AMB}=\widehat{AND}=90^0\\\widehat{B_1}=\widehat{D_1}\end{matrix}\right.\)

⇒ ΔABM ~ ΔADN (g.g)(đpcm)

b,

+) Vì tứ giác ABCD là hình bình hành

\(\left\{{}\begin{matrix}\text{AD = BC}\\\text{AB // CD}\end{matrix}\right.\)

Vì ΔABM ~ ΔADN

\(\frac{AB}{AD}=\frac{AM}{AN}\)

mà AD = BC

\(\frac{AB}{BC}=\frac{AM}{AN}\)

\(\frac{AB}{AM}=\frac{BC}{AN}\)

+) Vì \(\left\{{}\begin{matrix}\text{AN ⊥ CD}\\\text{AB // CD}\end{matrix}\right.\)

⇒ AN ⊥ AB

\(\widehat{BAN}=90^0\)

\(\widehat{ABC}\) là góc ngoài tại đỉnh B của ΔABM

\(\widehat{ABC}=\widehat{BAM}+\widehat{AMB}\)

\(\widehat{ABC}=\widehat{BAM}+90^0\) (\(\widehat{AMB}=90^0\))(1)

Ta có \(\widehat{AMN}=\widehat{BAN}+\widehat{BAM}\)

\(\widehat{AMN}=\widehat{BAM}+90^0\) (\(\widehat{BAN}=90^0\))(2)

Từ (1), (2) ⇒ \(\widehat{ABC}=\widehat{MAN}\)

+) ΔABC và ΔMAN có

\(\left\{{}\begin{matrix}\frac{AB}{AM}=\frac{BC}{AN}\\\widehat{ABC}=\widehat{MAN}\end{matrix}\right.\)

⇒ ΔABC ~ ΔMAN (c.g.c)

\(\frac{AB}{AM}=\frac{AC}{MN}\)

⇒ AB . MN = AC . AM (đpcm)

c, KẺ THÊM:

KẺ DE ⊥ AC TẠI E

KẺ BK ⊥ AC TẠI K

Vì tứ giác ABCD là hình bình hành

⇒ AD // BC

\(\widehat{A_1}=\widehat{C_1}\) (so le trong)

Vì DE ⊥ AC ⇒ \(\widehat{AED}=\widehat{CED}=90^0\)

Vì BK ⊥ AC ⇒ \(\widehat{BKC}=90^0\)

ΔCED và ΔCNA có

\(\left\{{}\begin{matrix}\widehat{C_2}\text{ chung}\\\widehat{CED}=\widehat{CNA}=90^0\end{matrix}\right.\)

⇒ ΔCED ~ ΔCNA (g.g)

\(\frac{CE}{CN}=\frac{CD}{CA}\)

⇒ CN . CD = CE . CA (3)

ΔCBK và ΔCAM có

\(\left\{{}\begin{matrix}\widehat{C_1}\text{ chung}\\\widehat{CKB}=\widehat{CMA}=90^0\end{matrix}\right.\)

⇒ ΔCBK ~ ΔCAM (g.g)

\(\frac{CB}{CA}=\frac{CK}{CM}\)

⇒ CB . CM = CK . AC (4)

Từ (3), (4)

⇒ CB.CM + CN.CD = CE.AC + CK.AC

⇒ CB.CM + CN.CD = AC.(CE + CK) (5)

ΔADE và ΔCBK có

\(\left\{{}\begin{matrix}\widehat{AED}=\widehat{CKB}=90^0\\\text{AD = BC}\\\widehat{A_1}=\widehat{C_1}\end{matrix}\right.\)

⇒ ΔADE = ΔCBK (ch.gn)(bằng nhau nha. Không phải đồng dạng đâu)

⇒ AE = CK (6)

Từ (5), (6)

⇒ CB.CM + CN.CD = AC.(CE + AE)

⇒ CB.CM + CN.CD = AC.AC

⇒ CB . CM + CN .CD = AC2 (đpcm)

Hình mình để bên dưới nhé! Trình bày có chỗ hơi khó hiểu hoặc khó nhìn nhưng thông cảm nhé! Nhớ đọc kĩ và hết phần bài của mình nha ! banhbanh

Ôn tập cuối năm phần hình học

Chúc bạn học tốt !!!! yeuyeuhehehehe

7 tháng 5 2019

Cam ơn nhiều ạ !

4 tháng 5 2019

bn tham khảo tại đây nhé :

Bài 57 Sách bài tập - tập 2 - trang 98 - Toán lớp 8 | Học trực tuyến

tuy ko giống hết nhưng bn có thể dựa vào đó mà tham khảo

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

góc IAB chung

=>ΔAIB đồng dạng vơi ΔAEC

b: ΔAIB đồng dạng với ΔAEC

=>AI/AE=AB/AC

=>AI/AB=AE/AC

=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC

c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có

góc FAC=góc ICB

=>ΔFAC đồng dạng với ΔICB

=>AF/IC=CA/CB

=>AF*CB=CA*IC

=>AB*AE+AF*CB=AC^2