Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.
S A B M N = S C D E F = a 2
S B H G C = S D K J A = b 2
Diện tích đa giác bằng :
S A B M N = S C D E F = a 2
S B H G C = S D K J A = b 2
Hình đa giác đó gồm hình bình hành ABCD, hình vuông ABMN, BHGC, CFED, DKJA.
\(S_{ABMN}=S_{CDEF}=a^2\)
\(S_{BHGC}=S_{DKJA}=b^2\)
Vẽ đường cao AH của hình bình hành ABCD (H thuộc CD)
Tam giác AHD vuông tại H có góc D = 30o => tam giác AHD là nửa tam giác đều cạnh AD
=> 2AH=AD
<=> AH=AD/2=8/2=4(cm)
=> SABCD=CD.AH=7,5.4=30(cm2)
a: BI=6/2=3cm
=>\(AI=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)
\(S_{AICK}=\sqrt{73}\cdot3\left(cm^2\right)\)
b: AICK là hình bình hành
=>AC cắt IK tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,IK,BD đồng quy
SABCD = AH.CD = 4.3 = 12(cm2)
Vì M là trung điểm của AB nên AM = 1 2 AB = 1 2 .4 = 2(cm)
Ta có chiều cao từ đỉnh D đến cạnh AM của tam giác ADM bằng chiều cao AH của hình bình hành.
=> SADM = 1 2 AH.AM = 1 2 .3.2 = 3(cm2)
Đáp án cần chọn là: A
Kẻ DH ^ AB tại H
⇒ A H = A D 2 = 4 c m
Áp dụng định lý Pytago trong D vuông ADH Þ DH = 4 3 cm.
ÞSABCD = DH.AB = 120cm2