Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
b: Xét ΔIAK và ΔIBC có
góc IAK=góc IBC
góc AIK=góc BIC
=>ΔIAK đồng dạng với ΔIBC
=>IK/IC=IA/IB=1/2
=>CI=2/3CK
Xét ΔCAA' có
CK là trung tuyến
CI=2/3CK
=>I là trọng tâm
a: Xét ΔCDK vuông tại C và ΔDBK vuông tại D có
góc K chung
=>ΔCDK đồng dạng với ΔDBK
=>KD/KB=KC/KD
=>KD^2=KB*KC
b: Xét ΔHAD vuông tại A và ΔHDB vuông tại D có
góc H chung
=>ΔHAD đồng dạng với ΔHDB
=>HA/HD=AD/DB
=>HA*DB=HD*AD
ban tim canh MH va canh NH. Sau do chung minh tam giacAMH dong dang tam giacNHB roi suy ra canh ti le va goc de chung minh 2 tam giac do dong dang
1: Xet ΔABH và ΔHDK có
góc ABH=góc HDK
góc AHB=góc HKD
=>ΔABH đồng dạng với ΔHDK
=>AB/HD=BH/DK=BN/DM
Xet ΔABN và ΔHDM có
góc ABN=góc HDM
AB/HD=BN/DM
=>ΔABN đồng dạng vơi ΔHDM
b: ΔOBN đồng dạng với ΔKDH
=>OB/KD=BN/DH
=>OB/BN=KD/DH
=>OB/2BN=DM/DH
=>OB/BH=DM/DH
Xét ΔOBH và ΔMDH có
góc OBH=góc MDH
OB/BH=MD/DH
=>ΔOBH đồng dạng với ΔMDH
=>góc OHB=góc DHM
=>O,H,M thẳng hàng
Giúp nhanh thôi