Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB^2+CD^2-\left(BC^2+DA^2\right)=\overrightarrow{AB}^2+\overrightarrow{CD}^2-\overrightarrow{BC}^2-\overrightarrow{AD}^2\)
\(=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)+\left(\overrightarrow{CD}-\overrightarrow{BC}\right)\left(\overrightarrow{CD}+\overrightarrow{BC}\right)\)
\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{DB}\left(\overrightarrow{BC}+\overrightarrow{DC}\right)\)
\(=\overrightarrow{DB}\left(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{BC}+\overrightarrow{DC}\right)\)
\(=2\overrightarrow{AC}.\overrightarrow{DB}\) (đpcm)
Chọn C
Theo đầu bài ta có: AC2 + BD2 = AD2 + BC2 nên AC2 - AD2 = BC2 - BD2
Suy ra:
Hay
Tương đương
a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)
\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)
\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)
b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)
\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)
Lời giải:
a)
\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)
\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)
\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)
Ta có:
\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)
\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)
\(\Rightarrow \angle A=60^0\)
b)
Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)
Đáp án: D
a sai vì nếu tam giác ABC thỏa mãn AB2 + AC2 = BC2 thì tam giác ABC vuông tại A không phải vuông tại B.
b, c, d đúng.
Ta có:
\(BC\left(AC.cosC-AB.cosB\right)=BC.AC.cosC-AB.BC.cosB\)
\(=BC.AC.\dfrac{BC^2+AC^2-AB^2}{2BC.AC}-AB.BC.\dfrac{AB^2+BC^2-AC^2}{2AB.BC}\)
\(=\dfrac{BC^2+AC^2-AB^2}{2}-\dfrac{AB^2+BC^2-AC^2}{2}\)
\(=AC^2-AB^2\) (đpcm)
Ta có: \(AC^2+BD^2=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)^2+\left(\overrightarrow{BC}+\overrightarrow{BA}\right)^2\)
\(=AB^2+AD^2+2\overrightarrow{AB}.\overrightarrow{AD}+BC^2+BA^2+2\overrightarrow{BA}.\overrightarrow{BC}\)
\(=AB^2+AD^2+BC^2+AD^2+2\overrightarrow{AB}\left(\overrightarrow{AD}-\overrightarrow{BC}\right)\)
\(=AB^2+AD^2+BC^2+AD^2\)