K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

A B C D E F M N

Áp dụng Talet vào tam giác AEM có AE//CD

\(\frac{AM}{CM}=\frac{1}{3}\Rightarrow\frac{AM}{AC}=\frac{1}{4}\Rightarrow S_{ADM}=\frac{1}{4}S_{ADC}=\frac{1}{8}S\)

Tương tự: \(\frac{CN}{AN}=\frac{1}{2}\Rightarrow\frac{CN}{AC}=\frac{1}{3}\Leftrightarrow S_{DNC}=\frac{1}{3}S_{ADC}=\frac{1}{6}S\)

Có: \(S_{DMN}=S_{ADC}-S_{ADM}-S_{DNC}=\frac{1}{2}S-\frac{1}{8}S-\frac{1}{6}S=\frac{5}{24}S\)

22 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EOM và  ∆ FON có: ∠ (MEO) =  ∠ (NFO) (so le trong do DE//BF)

OE = OF (tính chất hình bình hành)

∠ (MOE)=  ∠ (NOF) (đối đỉnh )

Suy ra:  ∆ EOM =  ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).