Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a^3-3ab^2=2\\b^3-3a^2b=-11\end{cases}\Rightarrow\hept{\begin{cases}\left(a^3-3ab^2\right)^2=4\\\left(b^3-3a^2b\right)^2=121\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=4\left(1\right)\\b^6-6a^2b^4+9a^4b^2=121\left(2\right)\end{cases}}\)
Cộng ( 1 ) với (2 ), ta được : \(a^6+b^6+3a^2b^4+3a^4b^2=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có: a + 2b - 3c = 0
=> a + 2b - 2c - c = 0
=> a - c = 2c - 2b
=> a - c = 2(c - b) (1)
Lại có: bc + 2ca - 3ab = 0
=> bc + 2ca - 2ab - ab = 0
=> b(c - a) + 2a(c - b) = 0 (2)
Thay (1) vào (2)
=> b(c - a) + a(a - c) = 0
=> b(c - a) - a(c - a) = 0
=> (c - a)(b - a) = 0
=> \(\orbr{\begin{cases}c-a=0\\b-a=0\end{cases}\Rightarrow}\orbr{\begin{cases}a=c\\a=b\end{cases}}\)
=> a = b = c
Bạn xem lại đề nhé :
Phương trình \(b^3-3b^2+5b+11=0\)không có nghiệm dương nhé
\(VT=b\left(b-\frac{3}{2}\right)^2+\frac{11}{4}b+11>0\forall b>0\)
tương tự câu này :
Câu hỏi của Thiên Ân - Toán lớp 8 - Học toán với OnlineMath