Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}mx+y=m\\mx+m^2y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}mx+y=m\\\left(m^2-1\right)y=0\end{matrix}\right.\)
Hệ đã cho có nghiệm duy nhất \(\Leftrightarrow m^2-1\ne0\)
\(\Leftrightarrow m\ne\pm1\)
\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)
Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)
\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
`x+my=m+1=>x=m+1-my` thế vào dưới
`=>m(m+1-my)+y-3m+1=0`
`<=>m^2+m-my^2+y-3m-1`
`=>y(1-m^2)=2m-1-m^2`
Hệ có no duy nhất
`=>1-m^2 ne 0=>m ne +-1`
`=>y=(-1+2m-m^2)/(1-m^2)=(m-1)/(m+1)`
`=>x=m+1-my=((m+1)^2-m(m-1))/(m+1)=(3m+1)/(m+1)`
`=>xy=((3m+1)(m-1))/(m+1)^2=(3m^2-2m-1)/(m+1)^2`
Xét `xy+1`
`=(3m^2-2m-1+m^2+2m+1)/(m+1)^2=(4m^2)/(m+1)^2`
`=>xy+1>=0=>xy>=-1`
Dấu "=" xảy ra khi `m=0`
\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-my\\y\left(m^2-1\right)=m^2-2m+1\end{matrix}\right.\)
Với m = 1 ta có: \(\left\{{}\begin{matrix}x=2-y\\0y=0\left(VSN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô số nghiệm
Với m = -1 ta có: \(\left\{{}\begin{matrix}x=y\\0y=4\left(VN\right)\end{matrix}\right.\)
\(\Rightarrow\) Hpt vô nghiệm
Với m \(\ne\) \(\pm\)1 ta có: \(\left\{{}\begin{matrix}x=m+1-my\\y=\dfrac{m^2-2m+1}{m^2-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m+1-\dfrac{m\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=m+1-\dfrac{m\left(m-1\right)}{m+1}=m+1-\dfrac{m^2-m}{m+1}\\y=\dfrac{m^2-2m+1}{m^2-1}=\dfrac{\left(m-1\right)^2}{\left(m-1\right)\left(m+1\right)}=\dfrac{m-1}{m+1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất x = ..; y = ... với x \(\ne\) \(\pm\) 1
Ta có: x = |y|
\(\Leftrightarrow\) \(\dfrac{3m+1}{m+1}=\left|\dfrac{m-1}{m+1}\right|\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\dfrac{3m+1}{m+1}=\dfrac{m-1}{m+1}\\\dfrac{3m+1}{m+1}=\dfrac{1-m}{m+1}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}3m+1=m-1\\3m+1=1-m\end{matrix}\right.\) (Vì m \(\ne\) -1)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2m=-2\\4m=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=-1\\m=0\end{matrix}\right.\)
Vì m \(\ne\) -1 nên m = -1 KTM
\(\Rightarrow\) m = 0 thỏa mãn đk
Vậy m = 0
Chúc bn học tốt!