Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)
b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)
\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)
\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)
\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)
\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)
\(\Leftrightarrow m^4+3m^3+2m+1=0\)
bạn tự giải nhé
\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
Để PT trên có nghiệm duy nhất:
\(\frac{m}{1}\ne\frac{2m}{m+1}\)
\(\Rightarrow m^2+m\ne2m\)
\(\Rightarrow m^2\ne m\Rightarrow m\ne0;m\ne1\)
\(\hept{\begin{cases}mx+2my=m+1\\x\left(m+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\mx+m\left(m+1\right)y=2m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2my=m+1\\2my-m\left(m+1\right)y=m+1-2m\left(#\right)\end{cases}}\)
Từ (#) \(2my-m\left(m+1\right)y=m+1-2m\)
\(\Leftrightarrow2my-m^2y-my=1-m\)
\(\Leftrightarrow my-m^2y=1-m\)
\(\Leftrightarrow y\left(m-m^2\right)=1-m\)
\(\Leftrightarrow y=\frac{1-m}{m-m^2}\)
\(\Leftrightarrow y=\frac{1-m}{m\left(1-m\right)}=\frac{1}{m}\)
Ta có \(x+\left(m+1\right)y=2\)
\(\Leftrightarrow x+\frac{m+1}{m}=2\)
\(\Leftrightarrow x=2-\frac{m+1}{m}=\frac{2m-m-1}{m}=\frac{m-1}{m}\)
=> PT trên ta có 1 nghiệm (x;y) = (m-1/m;1/m)
Ta có \(x+y=\frac{m-1}{m}+\frac{1}{m}=\frac{m}{m}=1\)
\(\Rightarrow y=1-x\)
=>điểm M (x;y) luôn thuộc 1 đường thẳng cố định khi m thay đổi
P/s về câu trường hợp thì mik ko chắc chắn có đúng không, bạn nên hỏi các thầy cô để chắc chắn ạ, sai-ib để mik sửa chữa ạ >:
Đáp án C
Vậy điểm M(x; y) luôn chạy trên đường thẳng cố định có phương trình y = x - 2