K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

\(a,\hept{\begin{cases}2x+my=m-1\\mx+2y=3-m\end{cases}\Leftrightarrow}\hept{\begin{cases}2mx+m^2y=m^2-m\\2mx+4y=6-2m\end{cases}}\)

Trừ vế cho vế ta được:\(\left(m^2-4\right)y=m^2+m-6\left(1\right)\)

- Nếu \(m^2-4=0\Leftrightarrow m=\pm2\)

  • \(m=2\left(1\right)\Leftrightarrow0y=0\)(luôn đúng)

Hệ có vô nghiệm. \(x=-y+\frac{1}{2}\)(Không thỏa \(x\in R\)khi \(y\in Z\))

  • \(m=-2\left(1\right)\Leftrightarrow0y=-4\left(vn\right)\)

- Nếu \(m\ne\pm2\left(1\right)\Leftrightarrow y=\frac{m+3}{m+2}\) 

Ta tìm được \(x=-\frac{m+1}{m+2}\)

Hệ có nghiệm duy nhất:

\(\hept{\begin{cases}x=-\frac{m+1}{m+2}\\y=\frac{m+3}{m+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1+\frac{1}{m+2}\\y=1+\frac{1}{m+2}\end{cases}}\)\(x,y\in Z\Leftrightarrow\frac{1}{m+2}\in Z;m\in Z\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\left(m\in Z\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)

\(b,\)Với \(m\ne\pm2\)Hệ có nghiệm duy nhất: \(\hept{\begin{cases}x_0=-1+\frac{1}{m+2}\\y_0=1+\frac{1}{m+2}\end{cases}}\)

Trừ vế cho vế ta được: \(x_0-y_0=-2\)

Đây là hệ thức liên hệ giữa \(x_0\)và \(y_0\)không phụ thuộc vào \(m\)

25 tháng 1 2018

a) \(\text{Với m= 1 ta có hpt:}\hept{\begin{cases}x+y=5\\2x-y=-2\end{cases}\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=4}\)

26 tháng 1 2018

cảm ơn bạn.còn câu b sao bạn

20 tháng 3 2022

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)

 

20 tháng 3 2022

x+y=0 \(\Rightarrow\) y=-x.

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).