Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo bài ra ta có: \(x^2+x-2=0\)
\(\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=-\left(-2\right)+2=4\\y=-1+2=1\end{matrix}\right.\)
Vậy tọa độ giao điểm cần tìm là: \(\left(-2;4\right)\); \(\left(1:1\right)\)
b. Thay x = 2 ; y = -1 vào hpt ta có:
\(\left\{{}\begin{matrix}8-a=b\\2+b=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-a-b=-8\\-a+b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+my=3\\m^2x+my=2m^2+m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\\left(m^2-1\right)x=2m^2+m-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\x=\dfrac{2m+3}{m+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m+3}{m+1}\\y=\dfrac{1}{m+1}\end{matrix}\right.\)
\(P=\left(\dfrac{2m+3}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}=\left(2+\dfrac{1}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}\)
\(=4+\dfrac{4}{m+1}+\dfrac{4}{\left(m+1\right)^2}=\left(\dfrac{2}{m+1}+1\right)^2+3\ge3\)
\(P_{min}=3\) khi \(m=-3\)
Xét hệ phương trình :\(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}}\)
a, Khi m = 1 ta có hệ phương trình : \(\hept{\begin{cases}x-y=1\\3x-2y=2004\end{cases}\Leftrightarrow\hept{\begin{cases}x=2002\\y=2001\end{cases}}}\)
b, \(\hept{\begin{cases}mx-y=1\\\frac{x}{2}-\frac{y}{3}=334\end{cases}\Leftrightarrow\hept{\begin{cases}mx-y=1\\3x-2y=2004\end{cases}}}\)
Hệ phương trình vô nghiệm khi \(\frac{m}{3}=\frac{1}{2}\ne\frac{1}{2004}\Leftrightarrow m=\frac{3}{2}\)
a. Thay m = 1 vào hệ ta dc: \(\hept{\begin{cases}x-y=1\\\frac{x}{2}+\frac{y}{3}=8\end{cases}}\) <=> \(\hept{\begin{cases}x-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}3x-3y=3\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}x-y=1\\-5y=-45\end{cases}}\)<=> \(\hept{\begin{cases}x=y+1=9+1=10\\y=9\end{cases}}\)
Vậy no cua hpt khi m = 1 là: (10;9)
b. Xét hệ: \(\hept{\begin{cases}mx-y=1\\3x+2y=48\end{cases}}\) <=> \(\hept{\begin{cases}2mx-2y=2\\3x+2y=48\end{cases}}\)<=> \(\hept{\begin{cases}\left(2m+3\right)x=50\left(1\right)\\3x+2y=48\end{cases}}\)
Hệ pt vô nghiệm <=> (1) vô nghiệm 2m + 3 = 0 <=> m = \(-\frac{3}{2}\)
Vậy khi m = -3/2 thì hệ pt vô nghiệm
b) pt1 <=> y = mx - 2
Thay y vào pt2 rút x ra ngoài,biến đổi, đc : x = (3 + 2m)/(1 + m²)
Thế vào pt1 đc : y = (3m + 2m²)/(1 + m²) - 2
x + 2y = 0 <=> (3 + 2m) + (6m + 4m²) = 4(1 + m²) <=> m = 1/8
a, Ta có: \(\forall m\) hệ có nghiệm duy nhất là: \(\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)
b, Có: \(x+y=1-\frac{m^2}{m^2+3}\)
\(\Leftrightarrow\frac{2m+5}{m^2+3}+\frac{5m-6}{m^2+3}=1-\frac{m^3}{m^2+3}\)
\(\Leftrightarrow m=\frac{7}{4}\)
Vậy .......