K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2021

Giải 

Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:

(m-1)(2-2y) + y =2

<=> ( 2m - 3)y= 2m-4 (3)

Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.

Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)

y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)

Vậy có hai giá trị m thỏa mãn:1,2.

 

7 tháng 1 2021

Thanks bạn nhiều :))

 

14 tháng 5 2022

\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)

Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)

               \(\Leftrightarrow m>-5\) (1)

Để \(y>0\)  \(\Leftrightarrow40-6m< 0\) 

                 \(\Leftrightarrow m>\dfrac{20}{3}\) (2)

\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)

 Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)

 

14 tháng 5 2022

bá cháy cj ơi , 1vote

23 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2m-mx\\x+m\left(2m-mx\right)=m+1\left(1\right)\end{matrix}\right.\)

(1) ⇔x+2m2-m2x=m+1

⇔x(1-m2)=m+1-2m2

TH1: 1-m2=0

⇔m=\(\pm\)1

-Thay m= 1 vào (2) ta có: 0x =0 (luôn đúng)

⇒m=1(chọn)

-Thay m=-1 và (2) ta có: 0x=-2 (vô lí)

⇒m=-1(loại)

TH2: 1-m2 ≠ 0

⇔m ≠ \(\pm\) 1

⇒HPT có nghiệm duy nhất: 

x= \(\dfrac{-2m^2+m+1}{1-m^2}\)

y= \(2m-m.\dfrac{-2m^2+m+1}{1-m^2}\)

⇔y= \(2m+\dfrac{-2m^3-m^2-m}{1-m^2}\)

 

a) Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy: Khi m=-1 thì (x,y)=(1;4)

b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)

Ta có: \(x^2+2y^2=18\)

\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)

\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)

\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)

\(\Leftrightarrow3m^2-8m+4=0\)

\(\Leftrightarrow3m^2-2m-6m+4=0\)

\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)

\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)

4 tháng 2 2021

 m=3 hoặc m=1.

 

9 tháng 2 2021

\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)

xét phương trình 2 ta được ; (m-2)(m+3)x=m+3

với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m

xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z

                                          =>x-1=2k

                                           =>x=2k+1

do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z

                         =>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn

 

10 tháng 3 2022

a, \(\left\{{}\begin{matrix}m^2x-my=2m\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x=2m+1\\y=\dfrac{1-x}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{1-\dfrac{2m+1}{m^2+1}}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2+1-2m-1}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2+1}\\y=\dfrac{\dfrac{m^2-2m}{m^2+1}}{m}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m^2}\\y=\dfrac{m^2-2m}{m^2+1}:m=\dfrac{m\left(m-2\right)}{m\left(m^2+1\right)}=\dfrac{m-2}{m^2+1}\end{matrix}\right.\)

b, Để hpt có nghiệm duy nhất khi \(\dfrac{m}{1}\ne-\dfrac{1}{m}\Leftrightarrow m^2\ne-1\left(luondung\right)\)

\(\dfrac{2m+1}{m^2}+\dfrac{m-2}{m^2+1}=-1\)

\(\Leftrightarrow\left(2m+1\right)\left(m^2+1\right)+m^2\left(m-2\right)=-m^2\left(m^2+1\right)\)

\(\Leftrightarrow2m^3+2m+m^2+1+m^3-2m^2=-m^4-m^2\)

\(\Leftrightarrow3m^3-m^2+2m+1=-m^4-m^2\)

\(\Leftrightarrow m^4+3m^3+2m+1=0\)

bạn tự giải nhé 

28 tháng 12 2022

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

28 tháng 12 2022

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.