K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(AH\cdot AC=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:

\(BK\cdot BH=AB^2\)(2)

Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)

21 tháng 9 2017

trả lời giúp mình câu kia nhé

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:

\(BA^2=AE\cdot AC\)

\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq36^052'\)

b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)

Do đó: ΔMAB\(\sim\)ΔABE(g-g)

 

8 tháng 8 2021

mk cần câu c và d ạ

25 tháng 10 2019

A D B C H M 5 12 K

a,Xét tam giác ABC vuông tại B có ;

\(AB^2+BC^2=AC^2\) ( Định lí Pytago )

<=> 25 + 144 = \(AC^2\)

<=> \(AC^2\) = 169

<=> AC = 13 (cm)

Ta có : sin \(\widehat{A}=\frac{BC}{AC}=\frac{12}{13}\)

=> \(\widehat{A}\approx67^o\)

Xét tam giác ABC có :

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

=> \(\widehat{C}=180^o-67^o-90^o\) = \(23^o\)

b,Xét tam giác ABC vuông tại B có đường cao BH :

+) AB.BC = BH.AC (hệ thức lượng)

<=> 5.12 = 13.BH

<=> BH = \(\frac{60}{13}\) \(\approx\) 4,6 cm

+) \(BC^2=HC.AC\)

<=> 144 = 13.HC

<=> HC = \(\frac{144}{13}\) cm

Xét tam giác ABC có BM là đường phân giác góc ABC :

=> \(\frac{AB}{CB}=\frac{AM}{CM}\) (tính chất đường phân giác trong tam giác )

<=> \(\frac{5}{12}=\frac{AM}{CM}\)

=> CM = \(\frac{13.12}{12+5}=\frac{156}{17}\) cm

=> HM = HC - CM = \(\frac{144}{13}-\frac{156}{17}=\frac{420}{221}\) \(\approx\) 1,9 cm

Xét tam giác BHM vuông tại H có :

\(BH^2+HM^2=BM^2\)

=> BM\(^2\) = 24,77

=> BM \(\approx\) 5 cm

c,Xét tam giác ABC vuông tại B đường cao BH có :

AB\(^2\) = AH.AC (hệ thức lượng)

Xét tam giác ABK vuông tại A đường cao AH có :

AB\(^2\) = BH.BK ( hệ thức lượng )

=> AH.AC = BH.BK ( = AB\(^2\))

13 tháng 8 2019

Violympic toán 9Violympic toán 9

30 tháng 10 2021

Chữ đẹp quá sư phụ!