Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) chứng minh tứ giác AMCN là hình bình hành
M là trung điểm AB nên: AM = \(\frac{1}{2}\)BC
N là trung điểm CD nên: CN = \(\frac{1}{2}\)CD
Vì tứ giác ABCD là hình bình hành nên:
- AB = CD => AM = CN
- AB // CD => AM //CN
Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.
b) chứng minh M, O, N thẳng hàng
* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.
Do đó, O là trung điểm AC
* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC
hay M, O, N thẳng hàng.
M là trung điểm AB nên : \(AM=\frac{BC}{2}\)
N là trung điểm CD nên : \(CN=\frac{CD}{2}\)
Vì tứ giác ABCD là hình bình hành :
- AB = CD => AM = CN
- AB // CD => AM // CN
Tứ giác AMCN có các cặp cạnh AM , CN song song và bằng nhau nên là hình bình hành ( đpcm )
b) - AC và BD là 2 đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm mỗi đường
=> O là trung điểm AC
- AC và MN là 2 đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC
hay M , O , N thẳng hàng ( đpcm )
Bài 7. Cho hình bình hành ABCD , O là giao điểm của AC và BD Gọi M và N lần lượt là trung điểm của các cạnh BC và AD . Chứng minh : a ) Tứ giác AMCN là hình bình hành . b ) Ba điểm M , O , N thẳng hàng . c ) Đường chéo BD cắt AM , CN lần lượt tại I và K. Chứng minh DK = KI = IB .
Bn tự vẽ hình nha!
A,
Ta có ABCD là Hcn
-> o là trung điêm của AC và BD
-> OA=OB=OC=OD
ta có OC=OD
-> tam giác ODC cân tại O
mà có Om là đg trung tuyến ( m là trung điêm DC-gt)
-> Om là đg cao
-> góc OMD = 90 độ
Ta có
O là trung điểm AC( cmt)
M là trung điểm CD(gt)
-> Om là đg trung bình tam giác ABC
-> OM song song AD; Om = 1/2 AD
Ta có OM song song Ad( cmt)
-> OMDA là hình thang
mà có góc OMD= 90 độ ( cmt)
-> OMDA là hình thang vuông( đpcm)
B,
Xét tứ giác ANOD có
NM song song AD( cmt- do Om song song AD)
An song song DO(gt- do AN song song DB)
-> ANoD là hbh ( đpcm)
Ok xong rùi☺
Bạn tự vẽ hình nha
a) Vì ABCD là hbh => AD // BC và AD = BC (1)
Theo gt: N là TĐ cuả AD =>\(AN=\dfrac{1}{2}AD\) (2)
M là TĐ của BC => \(AM=\dfrac{1}{2}BC\) (3)
Từ (1), (2), (3) => AN // MC; AN = MC
=> T.giác AMCN là hbh (*)
b) Vì t.giác AMCN là hbh
Lại có \(AC\cap BD=\left\{O\right\}\)
=> O là TĐ của AC (4)
Từ (*) => ĐƯờng chéo MN đi qua TĐ của đường chéo AC (5)
Từ (4) và (5) => MN đi qua O => M,O,N thẳng hàng
------------------------
Men mới nè.Tick, ib, follow tớ nhoa
a) + Tứ giác ABCD là hình bình hành
=> AD // BC ; AD = BC
=> AN // CM ; AN = CM
=> Tứ giác AMCN là hình bình hành
b) + Xét tứ giác ABCD có O là giao điểm của hai đường chéo
=> BO = DO ; AO = CO
+ NO là đường trung bình của tam giác ABD
=> NO // AB (1)
+ MO là đường trung bình của tam giác BCD
=> MO // CD (2)
+ Vì AB // CD nên từ (1) và (2) => M, O, N thẳng hàng
a,Có ABCD là hình bình hành,=>AD=BC(t/c);AD//BC(gt) AN//MC
Mà AD=AN+ND=>AN=ND(gt)=AD/2
BC=BM+MC=>BM+MC(gt)=BC/2
=>AN=ND=BM=MC(vì cùng bằng AD/2=BC/2)
Xét tứ giácAMCN có:
AN//CM(cmt)
AN=CM(cmt)
=>AMCN là hình bình hành(dhnb)
b,Xét hình bình hành ABCD có AC\(\cap\)BD =O(gt)
mà xét hình bình hành AMCN có:
AC\(\cap\)MN=O
=>NO=OM(t/c:trong hình bình hành,hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> NOM thẳng hàng
viet tat kho hieu