K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2021

\(y'=3x^2-6x-m\)

Hàm số có CĐ, CT khi \(y'=0\) có 2 nghiệm pb

\(\Rightarrow\Delta'=9+3m>0\Rightarrow m>-3\)

Tiến hành chia y cho y' và lấy phần dư ta được phương trình đường thẳng qua CĐ, CT có dạng:

\(y=-\left(\dfrac{2m}{3}+2\right)x-\dfrac{m}{3}+2\)

Do đường thẳng tạo với 2 trục 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}-\left(\dfrac{2m}{3}+2\right)=1\\-\left(\dfrac{2m}{3}+2\right)=-1\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{9}{2}< -3\left(loại\right)\\m=-\dfrac{3}{2}\end{matrix}\right.\)

24 tháng 2 2019

Ta có y’=3x2-6x-m

Để đồ thị hàm số đã cho có hai điểm cực trị khi  phương trình y’=0  có hai nghiệm phân biệt  ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3

Ta có 

đường thẳng đi qua hai điểm cực trị  Avà  B là 

Đường thẳng d; x+4y-5=0 có một VTPT là  n d → = ( 1 ; 4 ) .

Đường thẳng  có một VTCP là  n ∆ → = ( 2 m 3 + 2 ;   1 )

Ycbt suy ra:

Suy ra 

thỏa mãn

Chọn A.

25 tháng 11 2017

Chọn D