K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm...
Đọc tiếp

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành.            Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.

0
27 tháng 5 2023

Em tự vẽ đồ thị nhé!

b. Phương trình đường thẳng OA có dạng: \(y=ax\)

Thay tọa độ của A, ta được \(a=1\)

Do \(d//OA\) nên phương trình của \(d\) có dạng: \(y=x+b\)

\(d\) đi qua B nên \(0=2+b\Rightarrow b=-2\)

Suy ra phương trình của \(d\) là: \(y=x-2\)

Phương trình hoành độ giao điểm của \(d\) và \(\left(P\right)\) là:

\(-x^2=x-2\Leftrightarrow x^2+x-2=0\left(1\right)\)

Vì a + b + c = 0 nên (1) có hai nghiệm phân biệt \(x=x_C=1,x=x_D=-2\)

\(\Rightarrow y_C=-1,y_D=-4\)

Ta có: \(x_A=x_C\Rightarrow AC\perp Ox\)

Do đó: \(S_{ACD}=\dfrac{1}{2}\left|x_C-x_D\right|.\left|y_A-y_C\right|=\dfrac{1}{2}\left(x_C-x_D\right)\left(y_A-y_C\right)=3\left(cm^2\right)\)

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.b/Chứng minh:OK^2 = AH.(2R - AH).c/Tìm vị trí...
Đọc tiếp

1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.

2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).

3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.

a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.

b/Chứng minh:OK^2 = AH.(2R - AH).

c/Tìm vị trí của H để P = MA.MB.MC.MD có giá trị lớn nhất.

4/a/Cho (O;R) và đường thẳng d không đi qua (O).Lấy điểm M di chuyển được trên đường thẳng d. Từ M vẽ hai tiếp tuyến MP,MQ của (O). Chứng minh: Khi M thay đổi vị trí trên đường thẳng d thì dây cung PQ luôn đi qua 1 điểm cố định.

b/Cho tam giác có cạnh lớn nhất bằng 2. Người ta lấy 5 điểm phân biệt trong tam giác này. Chứng minh: Luôn tồn tại 2 điểm có khoảng cách không vượt quá 1. 

TỚ ĐANG CẦN GẤP LẮM. MONG CÁC BẠN GIẢI HỘ GIÙM MÌNH VỚI GHEN.CẢM ƠN NHIỀU NHIỀU !!!!!

0
7 tháng 11 2017

Bài 3 làm sao v ạ?

9 tháng 7 2017

a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM =  O A 2 = R 2

b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM

c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là  A O M ^ = 60 0 . Sử dụng tỉ số lượng giác của góc  A O M ^ , tính được OM=2OA=2R, tức là M cách O một khoảng 2R

d, Kết hợp ý a) và b) => OK.OH =  R 2 => OK = R 2 O H

Mà độ dài OH không đổi nên độ dài OK không đổi

Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi