Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: x>=3 hoặc x<=1
y=x^2-4x+3+4x+3=x^2+6
y'=2x
x>=3 hoặc 0<=x<=1 thì y'>=0
=>Đồng biến
Khi x<0 thì y'<0
=>Nghịch biến
TH2: 1<x<3
y=-x^2+4x-3+4x+3=-x^2+8x
y'=-2x+8
y'>0
=>x<4
mà 1<x<3
nên 1<x<3
=>Hàm số nghịch biến
TXĐ: \(D=R\)
\(y'=\dfrac{-5x+8}{2\sqrt{\left(x^2-x+3\right)^3}}=0\Rightarrow x=\dfrac{8}{5}\)
Dấu của y' trên trục số:
Từ đây ta thấy hàm đồng biến trên \(\left(-\infty;\dfrac{8}{5}\right)\) và nghịch biến trên \(\left(\dfrac{8}{5};+\infty\right)\)
TXĐ: D=(\(-\infty;2\)]
\(y'=1+2.\dfrac{-1}{2\sqrt{2-x}}\)\(=1-\dfrac{1}{\sqrt{2-x}}\)
Ta có bảng biến thiên sau:
x | \(-\infty\) 1 2 |
y' | + 0 - || |
Vậy hàm số đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;2\right)\)
Để xác định tính đơn điệu của hàm số \(y = x + 3 + 2\sqrt{2-x}\), ta cần tìm đạo hàm của hàm số này. Đạo hàm của hàm số y theo x là: \[y' = 1 - \frac{2}{\sqrt{2-x}}\] Để xác định tính đơn điệu của hàm số, ta cần xem xét dấu của đạo hàm trên mỗi khoảng xác định của hàm số. - Khi \(2-x > 0\), tức là \(x < 2\), ta có: \[y' = 1 - \frac{2}{\sqrt{2-x}} > 0\] Vậy hàm số tăng trên khoảng \((-\infty, 2)\). - Khi \(2-x < 0\), tức là \(x > 2\), ta có: \[y' = 1 - \frac{2}{\sqrt{2-x}} < 0\] Vậy hàm số giảm trên khoảng \((2, +\infty)\). Vậy, hàm số \(y = x + 3 + 2\sqrt{2-x}\) tăng trên khoảng \((-\infty, 2)\) và giảm trên khoảng \((2, +\infty)\).
Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).
\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.
Bảng biến thiên:
Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và yCĐ=4 (tại x=2).
Tham khảo: Đồ thị:
Lời giải:
Với $x\in (5;+\infty)\cup (-\infty;2)$ thì:
$y=x^2+x^2-7x+10=2x^2-7x+10$
$y'=4x-7=0\Leftrightarrow x=\frac{7}{4}$ (không nằm trong khoảng đang xét)
Với $x\in [2;5]$ thì:
$y=x^2-(x^2-7x+10)=7x-10$
$y'=7>0$
Lập BBT ta thấy:
Hàm $y$ đồng biến trên trên $(2;+\infty)$ và nghịch biến trên $(-\infty;2)$
- Điều kiện đồng biến, nghịch biến của hàm số:
Cho hàm số y = f(x) có đạo hàm trên khoảng K.
+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.
+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.
- Xét hàm số
+ Hàm số đồng biến
+ Hàm số nghịch biến
Vậy hàm số đồng biến trên
nghịch biến trên các khoảng và (1; +∞)
- Xét hàm số
Ta có: D = R \ {1}
∀ x ∈ D.
⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).
Tập xác định: D = R \ {1}
y' không xác định tại x = 1
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
guaur